diff --git a/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.markdown b/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.markdown index d192288721..285124d17c 100644 --- a/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.markdown +++ b/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.markdown @@ -188,7 +188,7 @@ blur = cv.GaussianBlur(img,(5,5),0) # find normalized_histogram, and its cumulative distribution function hist = cv.calcHist([blur],[0],None,[256],[0,256]) -hist_norm = hist.ravel()/hist.max() +hist_norm = hist.ravel()/hist.sum() Q = hist_norm.cumsum() bins = np.arange(256) @@ -199,6 +199,8 @@ thresh = -1 for i in xrange(1,256): p1,p2 = np.hsplit(hist_norm,[i]) # probabilities q1,q2 = Q[i],Q[255]-Q[i] # cum sum of classes + if q1 < 1.e-6 or q2 < 1.e-6: + continue b1,b2 = np.hsplit(bins,[i]) # weights # finding means and variances