support ReduceSum with two input and dynamic shape batch size in ReduceLayer.
This commit is contained in:
parent
139c443770
commit
1b8fba8e26
@ -1180,32 +1180,43 @@ void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::Node
|
||||
layerParams.set("reduce", reduceType);
|
||||
bool keepdims = layerParams.get<int>("keepdims", 1) == 1;
|
||||
|
||||
if (layer_type == "ReduceSum" && node_proto.input_size() == 2)
|
||||
{
|
||||
// TODO support the opset 13 of ReduceSum.
|
||||
// in opset 13, the ReduceSum has two input, it takes axes as input instead of attribute
|
||||
// details:https://github.com/onnx/onnx/issues/3420#issuecomment-844295687
|
||||
CV_Error(Error::StsNotImplemented, "Unsupported " + layer_type + " operation of opset 13, please try to "
|
||||
"re-export the onnx model with opset 11.");
|
||||
}
|
||||
|
||||
MatShape inpShape = outShapes[node_proto.input(0)];
|
||||
std::vector<bool> shouldDelete(inpShape.size(), false);
|
||||
|
||||
if (layerParams.has("axes"))
|
||||
if (layer_type == "ReduceSum" && node_proto.input_size() == 2)
|
||||
{
|
||||
DictValue axes = layerParams.get("axes");
|
||||
for (int i = 0; i < axes.size(); i++)
|
||||
if (constBlobs.find(node_proto.input(1)) != constBlobs.end())
|
||||
{
|
||||
int axis = normalize_axis(axes.get<int>(i), inpShape.size());
|
||||
shouldDelete[axis] = true;
|
||||
Mat axesMat = getBlob(node_proto, 1);
|
||||
int axesNum = axesMat.total();
|
||||
for (int i = 0; i < axesNum; i++)
|
||||
{
|
||||
int axis = normalize_axis(static_cast<int>(axesMat.at<float>(i)), inpShape.size());
|
||||
shouldDelete[axis] = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
// in opset 13, the ReduceSum has two input, it takes axes as input instead of attribute
|
||||
// details:https://github.com/onnx/onnx/issues/3420#issuecomment-844295687
|
||||
CV_Error(Error::StsNotImplemented, "Non-constant axis values in ReduceSum are not supported.");
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < inpShape.size(); i++)
|
||||
if (layerParams.has("axes"))
|
||||
{
|
||||
shouldDelete[i] = true;
|
||||
DictValue axes = layerParams.get("axes");
|
||||
for (int i = 0; i < axes.size(); i++)
|
||||
{
|
||||
int axis = normalize_axis(axes.get<int>(i), inpShape.size());
|
||||
shouldDelete[axis] = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < inpShape.size(); i++)
|
||||
{
|
||||
shouldDelete[i] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1291,6 +1302,17 @@ void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::Node
|
||||
layerParams.type = (depth == CV_8S) ? "ReshapeInt8" : "Reshape";
|
||||
layerParams.set("dim", DictValue::arrayInt(&targetShape[0], targetShape.size()));
|
||||
|
||||
// Set batchsize dim as dynamic to be compatible with batch size >= 2.
|
||||
if (targetShape[0] == 1 && targetShape.size() > 1)
|
||||
{
|
||||
std::vector<int> dynamicAxes = {0}; // The index of batchsize dim is 0.
|
||||
std::vector<int> inputIndices = {0};
|
||||
|
||||
layerParams.set("has_dynamic_shapes", true);
|
||||
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
|
||||
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
|
||||
}
|
||||
|
||||
node_proto.set_input(0, node_proto.output(0));
|
||||
node_proto.set_output(0, output_name);
|
||||
|
||||
|
||||
@ -411,6 +411,8 @@ TEST_P(Test_ONNX_layers, ReduceMean)
|
||||
TEST_P(Test_ONNX_layers, ReduceSum)
|
||||
{
|
||||
testONNXModels("reduce_sum");
|
||||
testONNXModels("reduce_sum_axis");
|
||||
testONNXModels("reduce_sum_axis_dynamic_batch");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, ReduceMax)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user