features2d(sift): enable runtime dispatching
This commit is contained in:
parent
c05ac8729e
commit
1f9713195b
@ -1,4 +1,7 @@
|
||||
set(the_description "2D Features Framework")
|
||||
|
||||
ocv_add_dispatched_file(sift SSE4_1 AVX2 AVX512_SKX)
|
||||
|
||||
set(debug_modules "")
|
||||
if(DEBUG_opencv_features2d)
|
||||
list(APPEND debug_modules opencv_highgui)
|
||||
|
||||
@ -70,14 +70,13 @@
|
||||
\**********************************************************************************************/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <iostream>
|
||||
#include <stdarg.h>
|
||||
#include <opencv2/core/hal/hal.hpp>
|
||||
|
||||
#include <opencv2/core/utils/tls.hpp>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
#include "sift.simd.hpp"
|
||||
#include "sift.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
|
||||
|
||||
namespace cv {
|
||||
|
||||
/*!
|
||||
SIFT implementation.
|
||||
@ -127,55 +126,6 @@ Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers,
|
||||
return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma);
|
||||
}
|
||||
|
||||
/******************************* Defs and macros *****************************/
|
||||
|
||||
// default width of descriptor histogram array
|
||||
static const int SIFT_DESCR_WIDTH = 4;
|
||||
|
||||
// default number of bins per histogram in descriptor array
|
||||
static const int SIFT_DESCR_HIST_BINS = 8;
|
||||
|
||||
// assumed gaussian blur for input image
|
||||
static const float SIFT_INIT_SIGMA = 0.5f;
|
||||
|
||||
// width of border in which to ignore keypoints
|
||||
static const int SIFT_IMG_BORDER = 5;
|
||||
|
||||
// maximum steps of keypoint interpolation before failure
|
||||
static const int SIFT_MAX_INTERP_STEPS = 5;
|
||||
|
||||
// default number of bins in histogram for orientation assignment
|
||||
static const int SIFT_ORI_HIST_BINS = 36;
|
||||
|
||||
// determines gaussian sigma for orientation assignment
|
||||
static const float SIFT_ORI_SIG_FCTR = 1.5f;
|
||||
|
||||
// determines the radius of the region used in orientation assignment
|
||||
static const float SIFT_ORI_RADIUS = 3 * SIFT_ORI_SIG_FCTR;
|
||||
|
||||
// orientation magnitude relative to max that results in new feature
|
||||
static const float SIFT_ORI_PEAK_RATIO = 0.8f;
|
||||
|
||||
// determines the size of a single descriptor orientation histogram
|
||||
static const float SIFT_DESCR_SCL_FCTR = 3.f;
|
||||
|
||||
// threshold on magnitude of elements of descriptor vector
|
||||
static const float SIFT_DESCR_MAG_THR = 0.2f;
|
||||
|
||||
// factor used to convert floating-point descriptor to unsigned char
|
||||
static const float SIFT_INT_DESCR_FCTR = 512.f;
|
||||
|
||||
#define DoG_TYPE_SHORT 0
|
||||
#if DoG_TYPE_SHORT
|
||||
// intermediate type used for DoG pyramids
|
||||
typedef short sift_wt;
|
||||
static const int SIFT_FIXPT_SCALE = 48;
|
||||
#else
|
||||
// intermediate type used for DoG pyramids
|
||||
typedef float sift_wt;
|
||||
static const int SIFT_FIXPT_SCALE = 1;
|
||||
#endif
|
||||
|
||||
static inline void
|
||||
unpackOctave(const KeyPoint& kpt, int& octave, int& layer, float& scale)
|
||||
{
|
||||
@ -311,249 +261,6 @@ void SIFT_Impl::buildDoGPyramid( const std::vector<Mat>& gpyr, std::vector<Mat>&
|
||||
parallel_for_(Range(0, nOctaves * (nOctaveLayers + 2)), buildDoGPyramidComputer(nOctaveLayers, gpyr, dogpyr));
|
||||
}
|
||||
|
||||
// Computes a gradient orientation histogram at a specified pixel
|
||||
static float calcOrientationHist( const Mat& img, Point pt, int radius,
|
||||
float sigma, float* hist, int n )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
int i, j, k, len = (radius*2+1)*(radius*2+1);
|
||||
|
||||
float expf_scale = -1.f/(2.f * sigma * sigma);
|
||||
AutoBuffer<float> buf(len*4 + n+4);
|
||||
float *X = buf.data(), *Y = X + len, *Mag = X, *Ori = Y + len, *W = Ori + len;
|
||||
float* temphist = W + len + 2;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
temphist[i] = 0.f;
|
||||
|
||||
for( i = -radius, k = 0; i <= radius; i++ )
|
||||
{
|
||||
int y = pt.y + i;
|
||||
if( y <= 0 || y >= img.rows - 1 )
|
||||
continue;
|
||||
for( j = -radius; j <= radius; j++ )
|
||||
{
|
||||
int x = pt.x + j;
|
||||
if( x <= 0 || x >= img.cols - 1 )
|
||||
continue;
|
||||
|
||||
float dx = (float)(img.at<sift_wt>(y, x+1) - img.at<sift_wt>(y, x-1));
|
||||
float dy = (float)(img.at<sift_wt>(y-1, x) - img.at<sift_wt>(y+1, x));
|
||||
|
||||
X[k] = dx; Y[k] = dy; W[k] = (i*i + j*j)*expf_scale;
|
||||
k++;
|
||||
}
|
||||
}
|
||||
|
||||
len = k;
|
||||
|
||||
// compute gradient values, orientations and the weights over the pixel neighborhood
|
||||
cv::hal::exp32f(W, W, len);
|
||||
cv::hal::fastAtan2(Y, X, Ori, len, true);
|
||||
cv::hal::magnitude32f(X, Y, Mag, len);
|
||||
|
||||
k = 0;
|
||||
#if CV_AVX2
|
||||
{
|
||||
__m256 __nd360 = _mm256_set1_ps(n/360.f);
|
||||
__m256i __n = _mm256_set1_epi32(n);
|
||||
int CV_DECL_ALIGNED(32) bin_buf[8];
|
||||
float CV_DECL_ALIGNED(32) w_mul_mag_buf[8];
|
||||
for ( ; k <= len - 8; k+=8 )
|
||||
{
|
||||
__m256i __bin = _mm256_cvtps_epi32(_mm256_mul_ps(__nd360, _mm256_loadu_ps(&Ori[k])));
|
||||
|
||||
__bin = _mm256_sub_epi32(__bin, _mm256_andnot_si256(_mm256_cmpgt_epi32(__n, __bin), __n));
|
||||
__bin = _mm256_add_epi32(__bin, _mm256_and_si256(__n, _mm256_cmpgt_epi32(_mm256_setzero_si256(), __bin)));
|
||||
|
||||
__m256 __w_mul_mag = _mm256_mul_ps(_mm256_loadu_ps(&W[k]), _mm256_loadu_ps(&Mag[k]));
|
||||
|
||||
_mm256_store_si256((__m256i *) bin_buf, __bin);
|
||||
_mm256_store_ps(w_mul_mag_buf, __w_mul_mag);
|
||||
|
||||
temphist[bin_buf[0]] += w_mul_mag_buf[0];
|
||||
temphist[bin_buf[1]] += w_mul_mag_buf[1];
|
||||
temphist[bin_buf[2]] += w_mul_mag_buf[2];
|
||||
temphist[bin_buf[3]] += w_mul_mag_buf[3];
|
||||
temphist[bin_buf[4]] += w_mul_mag_buf[4];
|
||||
temphist[bin_buf[5]] += w_mul_mag_buf[5];
|
||||
temphist[bin_buf[6]] += w_mul_mag_buf[6];
|
||||
temphist[bin_buf[7]] += w_mul_mag_buf[7];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for( ; k < len; k++ )
|
||||
{
|
||||
int bin = cvRound((n/360.f)*Ori[k]);
|
||||
if( bin >= n )
|
||||
bin -= n;
|
||||
if( bin < 0 )
|
||||
bin += n;
|
||||
temphist[bin] += W[k]*Mag[k];
|
||||
}
|
||||
|
||||
// smooth the histogram
|
||||
temphist[-1] = temphist[n-1];
|
||||
temphist[-2] = temphist[n-2];
|
||||
temphist[n] = temphist[0];
|
||||
temphist[n+1] = temphist[1];
|
||||
|
||||
i = 0;
|
||||
#if CV_AVX2
|
||||
{
|
||||
__m256 __d_1_16 = _mm256_set1_ps(1.f/16.f);
|
||||
__m256 __d_4_16 = _mm256_set1_ps(4.f/16.f);
|
||||
__m256 __d_6_16 = _mm256_set1_ps(6.f/16.f);
|
||||
for( ; i <= n - 8; i+=8 )
|
||||
{
|
||||
#if CV_FMA3
|
||||
__m256 __hist = _mm256_fmadd_ps(
|
||||
_mm256_add_ps(_mm256_loadu_ps(&temphist[i-2]), _mm256_loadu_ps(&temphist[i+2])),
|
||||
__d_1_16,
|
||||
_mm256_fmadd_ps(
|
||||
_mm256_add_ps(_mm256_loadu_ps(&temphist[i-1]), _mm256_loadu_ps(&temphist[i+1])),
|
||||
__d_4_16,
|
||||
_mm256_mul_ps(_mm256_loadu_ps(&temphist[i]), __d_6_16)));
|
||||
#else
|
||||
__m256 __hist = _mm256_add_ps(
|
||||
_mm256_mul_ps(
|
||||
_mm256_add_ps(_mm256_loadu_ps(&temphist[i-2]), _mm256_loadu_ps(&temphist[i+2])),
|
||||
__d_1_16),
|
||||
_mm256_add_ps(
|
||||
_mm256_mul_ps(
|
||||
_mm256_add_ps(_mm256_loadu_ps(&temphist[i-1]), _mm256_loadu_ps(&temphist[i+1])),
|
||||
__d_4_16),
|
||||
_mm256_mul_ps(_mm256_loadu_ps(&temphist[i]), __d_6_16)));
|
||||
#endif
|
||||
_mm256_storeu_ps(&hist[i], __hist);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for( ; i < n; i++ )
|
||||
{
|
||||
hist[i] = (temphist[i-2] + temphist[i+2])*(1.f/16.f) +
|
||||
(temphist[i-1] + temphist[i+1])*(4.f/16.f) +
|
||||
temphist[i]*(6.f/16.f);
|
||||
}
|
||||
|
||||
float maxval = hist[0];
|
||||
for( i = 1; i < n; i++ )
|
||||
maxval = std::max(maxval, hist[i]);
|
||||
|
||||
return maxval;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Interpolates a scale-space extremum's location and scale to subpixel
|
||||
// accuracy to form an image feature. Rejects features with low contrast.
|
||||
// Based on Section 4 of Lowe's paper.
|
||||
static bool adjustLocalExtrema( const std::vector<Mat>& dog_pyr, KeyPoint& kpt, int octv,
|
||||
int& layer, int& r, int& c, int nOctaveLayers,
|
||||
float contrastThreshold, float edgeThreshold, float sigma )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const float img_scale = 1.f/(255*SIFT_FIXPT_SCALE);
|
||||
const float deriv_scale = img_scale*0.5f;
|
||||
const float second_deriv_scale = img_scale;
|
||||
const float cross_deriv_scale = img_scale*0.25f;
|
||||
|
||||
float xi=0, xr=0, xc=0, contr=0;
|
||||
int i = 0;
|
||||
|
||||
for( ; i < SIFT_MAX_INTERP_STEPS; i++ )
|
||||
{
|
||||
int idx = octv*(nOctaveLayers+2) + layer;
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const Mat& prev = dog_pyr[idx-1];
|
||||
const Mat& next = dog_pyr[idx+1];
|
||||
|
||||
Vec3f dD((img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1))*deriv_scale,
|
||||
(img.at<sift_wt>(r+1, c) - img.at<sift_wt>(r-1, c))*deriv_scale,
|
||||
(next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c))*deriv_scale);
|
||||
|
||||
float v2 = (float)img.at<sift_wt>(r, c)*2;
|
||||
float dxx = (img.at<sift_wt>(r, c+1) + img.at<sift_wt>(r, c-1) - v2)*second_deriv_scale;
|
||||
float dyy = (img.at<sift_wt>(r+1, c) + img.at<sift_wt>(r-1, c) - v2)*second_deriv_scale;
|
||||
float dss = (next.at<sift_wt>(r, c) + prev.at<sift_wt>(r, c) - v2)*second_deriv_scale;
|
||||
float dxy = (img.at<sift_wt>(r+1, c+1) - img.at<sift_wt>(r+1, c-1) -
|
||||
img.at<sift_wt>(r-1, c+1) + img.at<sift_wt>(r-1, c-1))*cross_deriv_scale;
|
||||
float dxs = (next.at<sift_wt>(r, c+1) - next.at<sift_wt>(r, c-1) -
|
||||
prev.at<sift_wt>(r, c+1) + prev.at<sift_wt>(r, c-1))*cross_deriv_scale;
|
||||
float dys = (next.at<sift_wt>(r+1, c) - next.at<sift_wt>(r-1, c) -
|
||||
prev.at<sift_wt>(r+1, c) + prev.at<sift_wt>(r-1, c))*cross_deriv_scale;
|
||||
|
||||
Matx33f H(dxx, dxy, dxs,
|
||||
dxy, dyy, dys,
|
||||
dxs, dys, dss);
|
||||
|
||||
Vec3f X = H.solve(dD, DECOMP_LU);
|
||||
|
||||
xi = -X[2];
|
||||
xr = -X[1];
|
||||
xc = -X[0];
|
||||
|
||||
if( std::abs(xi) < 0.5f && std::abs(xr) < 0.5f && std::abs(xc) < 0.5f )
|
||||
break;
|
||||
|
||||
if( std::abs(xi) > (float)(INT_MAX/3) ||
|
||||
std::abs(xr) > (float)(INT_MAX/3) ||
|
||||
std::abs(xc) > (float)(INT_MAX/3) )
|
||||
return false;
|
||||
|
||||
c += cvRound(xc);
|
||||
r += cvRound(xr);
|
||||
layer += cvRound(xi);
|
||||
|
||||
if( layer < 1 || layer > nOctaveLayers ||
|
||||
c < SIFT_IMG_BORDER || c >= img.cols - SIFT_IMG_BORDER ||
|
||||
r < SIFT_IMG_BORDER || r >= img.rows - SIFT_IMG_BORDER )
|
||||
return false;
|
||||
}
|
||||
|
||||
// ensure convergence of interpolation
|
||||
if( i >= SIFT_MAX_INTERP_STEPS )
|
||||
return false;
|
||||
|
||||
{
|
||||
int idx = octv*(nOctaveLayers+2) + layer;
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const Mat& prev = dog_pyr[idx-1];
|
||||
const Mat& next = dog_pyr[idx+1];
|
||||
Matx31f dD((img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1))*deriv_scale,
|
||||
(img.at<sift_wt>(r+1, c) - img.at<sift_wt>(r-1, c))*deriv_scale,
|
||||
(next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c))*deriv_scale);
|
||||
float t = dD.dot(Matx31f(xc, xr, xi));
|
||||
|
||||
contr = img.at<sift_wt>(r, c)*img_scale + t * 0.5f;
|
||||
if( std::abs( contr ) * nOctaveLayers < contrastThreshold )
|
||||
return false;
|
||||
|
||||
// principal curvatures are computed using the trace and det of Hessian
|
||||
float v2 = img.at<sift_wt>(r, c)*2.f;
|
||||
float dxx = (img.at<sift_wt>(r, c+1) + img.at<sift_wt>(r, c-1) - v2)*second_deriv_scale;
|
||||
float dyy = (img.at<sift_wt>(r+1, c) + img.at<sift_wt>(r-1, c) - v2)*second_deriv_scale;
|
||||
float dxy = (img.at<sift_wt>(r+1, c+1) - img.at<sift_wt>(r+1, c-1) -
|
||||
img.at<sift_wt>(r-1, c+1) + img.at<sift_wt>(r-1, c-1)) * cross_deriv_scale;
|
||||
float tr = dxx + dyy;
|
||||
float det = dxx * dyy - dxy * dxy;
|
||||
|
||||
if( det <= 0 || tr*tr*edgeThreshold >= (edgeThreshold + 1)*(edgeThreshold + 1)*det )
|
||||
return false;
|
||||
}
|
||||
|
||||
kpt.pt.x = (c + xc) * (1 << octv);
|
||||
kpt.pt.y = (r + xr) * (1 << octv);
|
||||
kpt.octave = octv + (layer << 8) + (cvRound((xi + 0.5)*255) << 16);
|
||||
kpt.size = sigma*powf(2.f, (layer + xi) / nOctaveLayers)*(1 << octv)*2;
|
||||
kpt.response = std::abs(contr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
class findScaleSpaceExtremaComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
@ -589,84 +296,10 @@ public:
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
std::vector<KeyPoint>& kpts = tls_kpts_struct.getRef();
|
||||
|
||||
static const int n = SIFT_ORI_HIST_BINS;
|
||||
float hist[n];
|
||||
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const Mat& prev = dog_pyr[idx-1];
|
||||
const Mat& next = dog_pyr[idx+1];
|
||||
|
||||
std::vector<KeyPoint> *tls_kpts = tls_kpts_struct.get();
|
||||
|
||||
KeyPoint kpt;
|
||||
for( int r = begin; r < end; r++)
|
||||
{
|
||||
const sift_wt* currptr = img.ptr<sift_wt>(r);
|
||||
const sift_wt* prevptr = prev.ptr<sift_wt>(r);
|
||||
const sift_wt* nextptr = next.ptr<sift_wt>(r);
|
||||
|
||||
for( int c = SIFT_IMG_BORDER; c < cols-SIFT_IMG_BORDER; c++)
|
||||
{
|
||||
sift_wt val = currptr[c];
|
||||
|
||||
// find local extrema with pixel accuracy
|
||||
if( std::abs(val) > threshold &&
|
||||
((val > 0 && val >= currptr[c-1] && val >= currptr[c+1] &&
|
||||
val >= currptr[c-step-1] && val >= currptr[c-step] && val >= currptr[c-step+1] &&
|
||||
val >= currptr[c+step-1] && val >= currptr[c+step] && val >= currptr[c+step+1] &&
|
||||
val >= nextptr[c] && val >= nextptr[c-1] && val >= nextptr[c+1] &&
|
||||
val >= nextptr[c-step-1] && val >= nextptr[c-step] && val >= nextptr[c-step+1] &&
|
||||
val >= nextptr[c+step-1] && val >= nextptr[c+step] && val >= nextptr[c+step+1] &&
|
||||
val >= prevptr[c] && val >= prevptr[c-1] && val >= prevptr[c+1] &&
|
||||
val >= prevptr[c-step-1] && val >= prevptr[c-step] && val >= prevptr[c-step+1] &&
|
||||
val >= prevptr[c+step-1] && val >= prevptr[c+step] && val >= prevptr[c+step+1]) ||
|
||||
(val < 0 && val <= currptr[c-1] && val <= currptr[c+1] &&
|
||||
val <= currptr[c-step-1] && val <= currptr[c-step] && val <= currptr[c-step+1] &&
|
||||
val <= currptr[c+step-1] && val <= currptr[c+step] && val <= currptr[c+step+1] &&
|
||||
val <= nextptr[c] && val <= nextptr[c-1] && val <= nextptr[c+1] &&
|
||||
val <= nextptr[c-step-1] && val <= nextptr[c-step] && val <= nextptr[c-step+1] &&
|
||||
val <= nextptr[c+step-1] && val <= nextptr[c+step] && val <= nextptr[c+step+1] &&
|
||||
val <= prevptr[c] && val <= prevptr[c-1] && val <= prevptr[c+1] &&
|
||||
val <= prevptr[c-step-1] && val <= prevptr[c-step] && val <= prevptr[c-step+1] &&
|
||||
val <= prevptr[c+step-1] && val <= prevptr[c+step] && val <= prevptr[c+step+1])))
|
||||
{
|
||||
CV_TRACE_REGION("pixel_candidate");
|
||||
|
||||
int r1 = r, c1 = c, layer = i;
|
||||
if( !adjustLocalExtrema(dog_pyr, kpt, o, layer, r1, c1,
|
||||
nOctaveLayers, (float)contrastThreshold,
|
||||
(float)edgeThreshold, (float)sigma) )
|
||||
continue;
|
||||
float scl_octv = kpt.size*0.5f/(1 << o);
|
||||
float omax = calcOrientationHist(gauss_pyr[o*(nOctaveLayers+3) + layer],
|
||||
Point(c1, r1),
|
||||
cvRound(SIFT_ORI_RADIUS * scl_octv),
|
||||
SIFT_ORI_SIG_FCTR * scl_octv,
|
||||
hist, n);
|
||||
float mag_thr = (float)(omax * SIFT_ORI_PEAK_RATIO);
|
||||
for( int j = 0; j < n; j++ )
|
||||
{
|
||||
int l = j > 0 ? j - 1 : n - 1;
|
||||
int r2 = j < n-1 ? j + 1 : 0;
|
||||
|
||||
if( hist[j] > hist[l] && hist[j] > hist[r2] && hist[j] >= mag_thr )
|
||||
{
|
||||
float bin = j + 0.5f * (hist[l]-hist[r2]) / (hist[l] - 2*hist[j] + hist[r2]);
|
||||
bin = bin < 0 ? n + bin : bin >= n ? bin - n : bin;
|
||||
kpt.angle = 360.f - (float)((360.f/n) * bin);
|
||||
if(std::abs(kpt.angle - 360.f) < FLT_EPSILON)
|
||||
kpt.angle = 0.f;
|
||||
{
|
||||
tls_kpts->push_back(kpt);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CV_CPU_DISPATCH(findScaleSpaceExtrema, (o, i, threshold, idx, step, cols, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, gauss_pyr, dog_pyr, kpts, range),
|
||||
CV_CPU_DISPATCH_MODES_ALL);
|
||||
}
|
||||
private:
|
||||
int o, i;
|
||||
@ -721,299 +354,16 @@ void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const
|
||||
}
|
||||
|
||||
|
||||
static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float scl,
|
||||
int d, int n, float* dst )
|
||||
static
|
||||
void calcSIFTDescriptor(
|
||||
const Mat& img, Point2f ptf, float ori, float scl,
|
||||
int d, int n, float* dst
|
||||
)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
Point pt(cvRound(ptf.x), cvRound(ptf.y));
|
||||
float cos_t = cosf(ori*(float)(CV_PI/180));
|
||||
float sin_t = sinf(ori*(float)(CV_PI/180));
|
||||
float bins_per_rad = n / 360.f;
|
||||
float exp_scale = -1.f/(d * d * 0.5f);
|
||||
float hist_width = SIFT_DESCR_SCL_FCTR * scl;
|
||||
int radius = cvRound(hist_width * 1.4142135623730951f * (d + 1) * 0.5f);
|
||||
// Clip the radius to the diagonal of the image to avoid autobuffer too large exception
|
||||
radius = std::min(radius, (int) sqrt(((double) img.cols)*img.cols + ((double) img.rows)*img.rows));
|
||||
cos_t /= hist_width;
|
||||
sin_t /= hist_width;
|
||||
|
||||
int i, j, k, len = (radius*2+1)*(radius*2+1), histlen = (d+2)*(d+2)*(n+2);
|
||||
int rows = img.rows, cols = img.cols;
|
||||
|
||||
AutoBuffer<float> buf(len*6 + histlen);
|
||||
float *X = buf.data(), *Y = X + len, *Mag = Y, *Ori = Mag + len, *W = Ori + len;
|
||||
float *RBin = W + len, *CBin = RBin + len, *hist = CBin + len;
|
||||
|
||||
for( i = 0; i < d+2; i++ )
|
||||
{
|
||||
for( j = 0; j < d+2; j++ )
|
||||
for( k = 0; k < n+2; k++ )
|
||||
hist[(i*(d+2) + j)*(n+2) + k] = 0.;
|
||||
}
|
||||
|
||||
for( i = -radius, k = 0; i <= radius; i++ )
|
||||
for( j = -radius; j <= radius; j++ )
|
||||
{
|
||||
// Calculate sample's histogram array coords rotated relative to ori.
|
||||
// Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e.
|
||||
// r_rot = 1.5) have full weight placed in row 1 after interpolation.
|
||||
float c_rot = j * cos_t - i * sin_t;
|
||||
float r_rot = j * sin_t + i * cos_t;
|
||||
float rbin = r_rot + d/2 - 0.5f;
|
||||
float cbin = c_rot + d/2 - 0.5f;
|
||||
int r = pt.y + i, c = pt.x + j;
|
||||
|
||||
if( rbin > -1 && rbin < d && cbin > -1 && cbin < d &&
|
||||
r > 0 && r < rows - 1 && c > 0 && c < cols - 1 )
|
||||
{
|
||||
float dx = (float)(img.at<sift_wt>(r, c+1) - img.at<sift_wt>(r, c-1));
|
||||
float dy = (float)(img.at<sift_wt>(r-1, c) - img.at<sift_wt>(r+1, c));
|
||||
X[k] = dx; Y[k] = dy; RBin[k] = rbin; CBin[k] = cbin;
|
||||
W[k] = (c_rot * c_rot + r_rot * r_rot)*exp_scale;
|
||||
k++;
|
||||
}
|
||||
}
|
||||
|
||||
len = k;
|
||||
cv::hal::fastAtan2(Y, X, Ori, len, true);
|
||||
cv::hal::magnitude32f(X, Y, Mag, len);
|
||||
cv::hal::exp32f(W, W, len);
|
||||
|
||||
k = 0;
|
||||
#if CV_AVX2
|
||||
{
|
||||
int CV_DECL_ALIGNED(32) idx_buf[8];
|
||||
float CV_DECL_ALIGNED(32) rco_buf[64];
|
||||
const __m256 __ori = _mm256_set1_ps(ori);
|
||||
const __m256 __bins_per_rad = _mm256_set1_ps(bins_per_rad);
|
||||
const __m256i __n = _mm256_set1_epi32(n);
|
||||
for( ; k <= len - 8; k+=8 )
|
||||
{
|
||||
__m256 __rbin = _mm256_loadu_ps(&RBin[k]);
|
||||
__m256 __cbin = _mm256_loadu_ps(&CBin[k]);
|
||||
__m256 __obin = _mm256_mul_ps(_mm256_sub_ps(_mm256_loadu_ps(&Ori[k]), __ori), __bins_per_rad);
|
||||
__m256 __mag = _mm256_mul_ps(_mm256_loadu_ps(&Mag[k]), _mm256_loadu_ps(&W[k]));
|
||||
|
||||
__m256 __r0 = _mm256_floor_ps(__rbin);
|
||||
__rbin = _mm256_sub_ps(__rbin, __r0);
|
||||
__m256 __c0 = _mm256_floor_ps(__cbin);
|
||||
__cbin = _mm256_sub_ps(__cbin, __c0);
|
||||
__m256 __o0 = _mm256_floor_ps(__obin);
|
||||
__obin = _mm256_sub_ps(__obin, __o0);
|
||||
|
||||
__m256i __o0i = _mm256_cvtps_epi32(__o0);
|
||||
__o0i = _mm256_add_epi32(__o0i, _mm256_and_si256(__n, _mm256_cmpgt_epi32(_mm256_setzero_si256(), __o0i)));
|
||||
__o0i = _mm256_sub_epi32(__o0i, _mm256_andnot_si256(_mm256_cmpgt_epi32(__n, __o0i), __n));
|
||||
|
||||
__m256 __v_r1 = _mm256_mul_ps(__mag, __rbin);
|
||||
__m256 __v_r0 = _mm256_sub_ps(__mag, __v_r1);
|
||||
|
||||
__m256 __v_rc11 = _mm256_mul_ps(__v_r1, __cbin);
|
||||
__m256 __v_rc10 = _mm256_sub_ps(__v_r1, __v_rc11);
|
||||
|
||||
__m256 __v_rc01 = _mm256_mul_ps(__v_r0, __cbin);
|
||||
__m256 __v_rc00 = _mm256_sub_ps(__v_r0, __v_rc01);
|
||||
|
||||
__m256 __v_rco111 = _mm256_mul_ps(__v_rc11, __obin);
|
||||
__m256 __v_rco110 = _mm256_sub_ps(__v_rc11, __v_rco111);
|
||||
|
||||
__m256 __v_rco101 = _mm256_mul_ps(__v_rc10, __obin);
|
||||
__m256 __v_rco100 = _mm256_sub_ps(__v_rc10, __v_rco101);
|
||||
|
||||
__m256 __v_rco011 = _mm256_mul_ps(__v_rc01, __obin);
|
||||
__m256 __v_rco010 = _mm256_sub_ps(__v_rc01, __v_rco011);
|
||||
|
||||
__m256 __v_rco001 = _mm256_mul_ps(__v_rc00, __obin);
|
||||
__m256 __v_rco000 = _mm256_sub_ps(__v_rc00, __v_rco001);
|
||||
|
||||
__m256i __one = _mm256_set1_epi32(1);
|
||||
__m256i __idx = _mm256_add_epi32(
|
||||
_mm256_mullo_epi32(
|
||||
_mm256_add_epi32(
|
||||
_mm256_mullo_epi32(_mm256_add_epi32(_mm256_cvtps_epi32(__r0), __one), _mm256_set1_epi32(d + 2)),
|
||||
_mm256_add_epi32(_mm256_cvtps_epi32(__c0), __one)),
|
||||
_mm256_set1_epi32(n + 2)),
|
||||
__o0i);
|
||||
|
||||
_mm256_store_si256((__m256i *)idx_buf, __idx);
|
||||
|
||||
_mm256_store_ps(&(rco_buf[0]), __v_rco000);
|
||||
_mm256_store_ps(&(rco_buf[8]), __v_rco001);
|
||||
_mm256_store_ps(&(rco_buf[16]), __v_rco010);
|
||||
_mm256_store_ps(&(rco_buf[24]), __v_rco011);
|
||||
_mm256_store_ps(&(rco_buf[32]), __v_rco100);
|
||||
_mm256_store_ps(&(rco_buf[40]), __v_rco101);
|
||||
_mm256_store_ps(&(rco_buf[48]), __v_rco110);
|
||||
_mm256_store_ps(&(rco_buf[56]), __v_rco111);
|
||||
#define HIST_SUM_HELPER(id) \
|
||||
hist[idx_buf[(id)]] += rco_buf[(id)]; \
|
||||
hist[idx_buf[(id)]+1] += rco_buf[8 + (id)]; \
|
||||
hist[idx_buf[(id)]+(n+2)] += rco_buf[16 + (id)]; \
|
||||
hist[idx_buf[(id)]+(n+3)] += rco_buf[24 + (id)]; \
|
||||
hist[idx_buf[(id)]+(d+2)*(n+2)] += rco_buf[32 + (id)]; \
|
||||
hist[idx_buf[(id)]+(d+2)*(n+2)+1] += rco_buf[40 + (id)]; \
|
||||
hist[idx_buf[(id)]+(d+3)*(n+2)] += rco_buf[48 + (id)]; \
|
||||
hist[idx_buf[(id)]+(d+3)*(n+2)+1] += rco_buf[56 + (id)];
|
||||
|
||||
HIST_SUM_HELPER(0);
|
||||
HIST_SUM_HELPER(1);
|
||||
HIST_SUM_HELPER(2);
|
||||
HIST_SUM_HELPER(3);
|
||||
HIST_SUM_HELPER(4);
|
||||
HIST_SUM_HELPER(5);
|
||||
HIST_SUM_HELPER(6);
|
||||
HIST_SUM_HELPER(7);
|
||||
|
||||
#undef HIST_SUM_HELPER
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for( ; k < len; k++ )
|
||||
{
|
||||
float rbin = RBin[k], cbin = CBin[k];
|
||||
float obin = (Ori[k] - ori)*bins_per_rad;
|
||||
float mag = Mag[k]*W[k];
|
||||
|
||||
int r0 = cvFloor( rbin );
|
||||
int c0 = cvFloor( cbin );
|
||||
int o0 = cvFloor( obin );
|
||||
rbin -= r0;
|
||||
cbin -= c0;
|
||||
obin -= o0;
|
||||
|
||||
if( o0 < 0 )
|
||||
o0 += n;
|
||||
if( o0 >= n )
|
||||
o0 -= n;
|
||||
|
||||
// histogram update using tri-linear interpolation
|
||||
float v_r1 = mag*rbin, v_r0 = mag - v_r1;
|
||||
float v_rc11 = v_r1*cbin, v_rc10 = v_r1 - v_rc11;
|
||||
float v_rc01 = v_r0*cbin, v_rc00 = v_r0 - v_rc01;
|
||||
float v_rco111 = v_rc11*obin, v_rco110 = v_rc11 - v_rco111;
|
||||
float v_rco101 = v_rc10*obin, v_rco100 = v_rc10 - v_rco101;
|
||||
float v_rco011 = v_rc01*obin, v_rco010 = v_rc01 - v_rco011;
|
||||
float v_rco001 = v_rc00*obin, v_rco000 = v_rc00 - v_rco001;
|
||||
|
||||
int idx = ((r0+1)*(d+2) + c0+1)*(n+2) + o0;
|
||||
hist[idx] += v_rco000;
|
||||
hist[idx+1] += v_rco001;
|
||||
hist[idx+(n+2)] += v_rco010;
|
||||
hist[idx+(n+3)] += v_rco011;
|
||||
hist[idx+(d+2)*(n+2)] += v_rco100;
|
||||
hist[idx+(d+2)*(n+2)+1] += v_rco101;
|
||||
hist[idx+(d+3)*(n+2)] += v_rco110;
|
||||
hist[idx+(d+3)*(n+2)+1] += v_rco111;
|
||||
}
|
||||
|
||||
// finalize histogram, since the orientation histograms are circular
|
||||
for( i = 0; i < d; i++ )
|
||||
for( j = 0; j < d; j++ )
|
||||
{
|
||||
int idx = ((i+1)*(d+2) + (j+1))*(n+2);
|
||||
hist[idx] += hist[idx+n];
|
||||
hist[idx+1] += hist[idx+n+1];
|
||||
for( k = 0; k < n; k++ )
|
||||
dst[(i*d + j)*n + k] = hist[idx+k];
|
||||
}
|
||||
// copy histogram to the descriptor,
|
||||
// apply hysteresis thresholding
|
||||
// and scale the result, so that it can be easily converted
|
||||
// to byte array
|
||||
float nrm2 = 0;
|
||||
len = d*d*n;
|
||||
k = 0;
|
||||
#if CV_AVX2
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) nrm2_buf[8];
|
||||
__m256 __nrm2 = _mm256_setzero_ps();
|
||||
__m256 __dst;
|
||||
for( ; k <= len - 8; k += 8 )
|
||||
{
|
||||
__dst = _mm256_loadu_ps(&dst[k]);
|
||||
#if CV_FMA3
|
||||
__nrm2 = _mm256_fmadd_ps(__dst, __dst, __nrm2);
|
||||
#else
|
||||
__nrm2 = _mm256_add_ps(__nrm2, _mm256_mul_ps(__dst, __dst));
|
||||
#endif
|
||||
}
|
||||
_mm256_store_ps(nrm2_buf, __nrm2);
|
||||
nrm2 = nrm2_buf[0] + nrm2_buf[1] + nrm2_buf[2] + nrm2_buf[3] +
|
||||
nrm2_buf[4] + nrm2_buf[5] + nrm2_buf[6] + nrm2_buf[7];
|
||||
}
|
||||
#endif
|
||||
for( ; k < len; k++ )
|
||||
nrm2 += dst[k]*dst[k];
|
||||
|
||||
float thr = std::sqrt(nrm2)*SIFT_DESCR_MAG_THR;
|
||||
|
||||
i = 0, nrm2 = 0;
|
||||
#if 0 //CV_AVX2
|
||||
// This code cannot be enabled because it sums nrm2 in a different order,
|
||||
// thus producing slightly different results
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) nrm2_buf[8];
|
||||
__m256 __dst;
|
||||
__m256 __nrm2 = _mm256_setzero_ps();
|
||||
__m256 __thr = _mm256_set1_ps(thr);
|
||||
for( ; i <= len - 8; i += 8 )
|
||||
{
|
||||
__dst = _mm256_loadu_ps(&dst[i]);
|
||||
__dst = _mm256_min_ps(__dst, __thr);
|
||||
_mm256_storeu_ps(&dst[i], __dst);
|
||||
#if CV_FMA3
|
||||
__nrm2 = _mm256_fmadd_ps(__dst, __dst, __nrm2);
|
||||
#else
|
||||
__nrm2 = _mm256_add_ps(__nrm2, _mm256_mul_ps(__dst, __dst));
|
||||
#endif
|
||||
}
|
||||
_mm256_store_ps(nrm2_buf, __nrm2);
|
||||
nrm2 = nrm2_buf[0] + nrm2_buf[1] + nrm2_buf[2] + nrm2_buf[3] +
|
||||
nrm2_buf[4] + nrm2_buf[5] + nrm2_buf[6] + nrm2_buf[7];
|
||||
}
|
||||
#endif
|
||||
for( ; i < len; i++ )
|
||||
{
|
||||
float val = std::min(dst[i], thr);
|
||||
dst[i] = val;
|
||||
nrm2 += val*val;
|
||||
}
|
||||
nrm2 = SIFT_INT_DESCR_FCTR/std::max(std::sqrt(nrm2), FLT_EPSILON);
|
||||
|
||||
#if 1
|
||||
k = 0;
|
||||
#if CV_AVX2
|
||||
{
|
||||
__m256 __dst;
|
||||
__m256 __min = _mm256_setzero_ps();
|
||||
__m256 __max = _mm256_set1_ps(255.0f); // max of uchar
|
||||
__m256 __nrm2 = _mm256_set1_ps(nrm2);
|
||||
for( k = 0; k <= len - 8; k+=8 )
|
||||
{
|
||||
__dst = _mm256_loadu_ps(&dst[k]);
|
||||
__dst = _mm256_min_ps(_mm256_max_ps(_mm256_round_ps(_mm256_mul_ps(__dst, __nrm2), _MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC), __min), __max);
|
||||
_mm256_storeu_ps(&dst[k], __dst);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for( ; k < len; k++ )
|
||||
{
|
||||
dst[k] = saturate_cast<uchar>(dst[k]*nrm2);
|
||||
}
|
||||
#else
|
||||
float nrm1 = 0;
|
||||
for( k = 0; k < len; k++ )
|
||||
{
|
||||
dst[k] *= nrm2;
|
||||
nrm1 += dst[k];
|
||||
}
|
||||
nrm1 = 1.f/std::max(nrm1, FLT_EPSILON);
|
||||
for( k = 0; k < len; k++ )
|
||||
{
|
||||
dst[k] = std::sqrt(dst[k] * nrm1);//saturate_cast<uchar>(std::sqrt(dst[k] * nrm1)*SIFT_INT_DESCR_FCTR);
|
||||
}
|
||||
#endif
|
||||
CV_CPU_DISPATCH(calcSIFTDescriptor, (img, ptf, ori, scl, d, n, dst),
|
||||
CV_CPU_DISPATCH_MODES_ALL);
|
||||
}
|
||||
|
||||
class calcDescriptorsComputer : public ParallelLoopBody
|
||||
|
||||
@ -70,63 +70,13 @@
|
||||
\**********************************************************************************************/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <iostream>
|
||||
#include <stdarg.h>
|
||||
|
||||
#include <opencv2/core/hal/hal.hpp>
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
|
||||
#include <opencv2/core/utils/tls.hpp>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/*!
|
||||
SIFT implementation.
|
||||
|
||||
The class implements SIFT algorithm by D. Lowe.
|
||||
*/
|
||||
class SIFT_Impl : public SIFT
|
||||
{
|
||||
public:
|
||||
explicit SIFT_Impl( int nfeatures = 0, int nOctaveLayers = 3,
|
||||
double contrastThreshold = 0.04, double edgeThreshold = 10,
|
||||
double sigma = 1.6);
|
||||
|
||||
//! returns the descriptor size in floats (128)
|
||||
int descriptorSize() const CV_OVERRIDE;
|
||||
|
||||
//! returns the descriptor type
|
||||
int descriptorType() const CV_OVERRIDE;
|
||||
|
||||
//! returns the default norm type
|
||||
int defaultNorm() const CV_OVERRIDE;
|
||||
|
||||
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
|
||||
//! Optionally it can compute descriptors for the user-provided keypoints
|
||||
void detectAndCompute(InputArray img, InputArray mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors,
|
||||
bool useProvidedKeypoints = false) CV_OVERRIDE;
|
||||
|
||||
void buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const;
|
||||
void buildDoGPyramid( const std::vector<Mat>& pyr, std::vector<Mat>& dogpyr ) const;
|
||||
void findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& keypoints ) const;
|
||||
|
||||
protected:
|
||||
CV_PROP_RW int nfeatures;
|
||||
CV_PROP_RW int nOctaveLayers;
|
||||
CV_PROP_RW double contrastThreshold;
|
||||
CV_PROP_RW double edgeThreshold;
|
||||
CV_PROP_RW double sigma;
|
||||
};
|
||||
|
||||
Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers,
|
||||
double _contrastThreshold, double _edgeThreshold, double _sigma )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma);
|
||||
}
|
||||
namespace cv {
|
||||
|
||||
#if !defined(CV_CPU_DISPATCH_MODE) || !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY)
|
||||
/******************************* Defs and macros *****************************/
|
||||
|
||||
// default width of descriptor histogram array
|
||||
@ -151,7 +101,7 @@ static const int SIFT_ORI_HIST_BINS = 36;
|
||||
static const float SIFT_ORI_SIG_FCTR = 1.5f;
|
||||
|
||||
// determines the radius of the region used in orientation assignment
|
||||
static const float SIFT_ORI_RADIUS = 3 * SIFT_ORI_SIG_FCTR;
|
||||
static const float SIFT_ORI_RADIUS = 4.5f; // 3 * SIFT_ORI_SIG_FCTR;
|
||||
|
||||
// orientation magnitude relative to max that results in new feature
|
||||
static const float SIFT_ORI_PEAK_RATIO = 0.8f;
|
||||
@ -176,144 +126,41 @@ typedef float sift_wt;
|
||||
static const int SIFT_FIXPT_SCALE = 1;
|
||||
#endif
|
||||
|
||||
static inline void
|
||||
unpackOctave(const KeyPoint& kpt, int& octave, int& layer, float& scale)
|
||||
{
|
||||
octave = kpt.octave & 255;
|
||||
layer = (kpt.octave >> 8) & 255;
|
||||
octave = octave < 128 ? octave : (-128 | octave);
|
||||
scale = octave >= 0 ? 1.f/(1 << octave) : (float)(1 << -octave);
|
||||
}
|
||||
|
||||
static Mat createInitialImage( const Mat& img, bool doubleImageSize, float sigma )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
Mat gray, gray_fpt;
|
||||
if( img.channels() == 3 || img.channels() == 4 )
|
||||
{
|
||||
cvtColor(img, gray, COLOR_BGR2GRAY);
|
||||
gray.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);
|
||||
}
|
||||
else
|
||||
img.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);
|
||||
|
||||
float sig_diff;
|
||||
|
||||
if( doubleImageSize )
|
||||
{
|
||||
sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4, 0.01f) );
|
||||
Mat dbl;
|
||||
#if DoG_TYPE_SHORT
|
||||
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR_EXACT);
|
||||
#else
|
||||
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR);
|
||||
#endif
|
||||
Mat result;
|
||||
GaussianBlur(dbl, result, Size(), sig_diff, sig_diff);
|
||||
return result;
|
||||
}
|
||||
else
|
||||
{
|
||||
sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA, 0.01f) );
|
||||
Mat result;
|
||||
GaussianBlur(gray_fpt, result, Size(), sig_diff, sig_diff);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
#endif // definitions and macros
|
||||
|
||||
|
||||
void SIFT_Impl::buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
|
||||
std::vector<double> sig(nOctaveLayers + 3);
|
||||
pyr.resize(nOctaves*(nOctaveLayers + 3));
|
||||
void findScaleSpaceExtrema(
|
||||
int octave,
|
||||
int layer,
|
||||
int threshold,
|
||||
int idx,
|
||||
int step,
|
||||
int cols,
|
||||
int nOctaveLayers,
|
||||
double contrastThreshold,
|
||||
double edgeThreshold,
|
||||
double sigma,
|
||||
const std::vector<Mat>& gauss_pyr,
|
||||
const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& kpts,
|
||||
const cv::Range& range);
|
||||
|
||||
// precompute Gaussian sigmas using the following formula:
|
||||
// \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2
|
||||
sig[0] = sigma;
|
||||
double k = std::pow( 2., 1. / nOctaveLayers );
|
||||
for( int i = 1; i < nOctaveLayers + 3; i++ )
|
||||
{
|
||||
double sig_prev = std::pow(k, (double)(i-1))*sigma;
|
||||
double sig_total = sig_prev*k;
|
||||
sig[i] = std::sqrt(sig_total*sig_total - sig_prev*sig_prev);
|
||||
}
|
||||
|
||||
for( int o = 0; o < nOctaves; o++ )
|
||||
{
|
||||
for( int i = 0; i < nOctaveLayers + 3; i++ )
|
||||
{
|
||||
Mat& dst = pyr[o*(nOctaveLayers + 3) + i];
|
||||
if( o == 0 && i == 0 )
|
||||
dst = base;
|
||||
// base of new octave is halved image from end of previous octave
|
||||
else if( i == 0 )
|
||||
{
|
||||
const Mat& src = pyr[(o-1)*(nOctaveLayers + 3) + nOctaveLayers];
|
||||
resize(src, dst, Size(src.cols/2, src.rows/2),
|
||||
0, 0, INTER_NEAREST);
|
||||
}
|
||||
else
|
||||
{
|
||||
const Mat& src = pyr[o*(nOctaveLayers + 3) + i-1];
|
||||
GaussianBlur(src, dst, Size(), sig[i], sig[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void calcSIFTDescriptor(
|
||||
const Mat& img, Point2f ptf, float ori, float scl,
|
||||
int d, int n, float* dst
|
||||
);
|
||||
|
||||
|
||||
class buildDoGPyramidComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
buildDoGPyramidComputer(
|
||||
int _nOctaveLayers,
|
||||
const std::vector<Mat>& _gpyr,
|
||||
std::vector<Mat>& _dogpyr)
|
||||
: nOctaveLayers(_nOctaveLayers),
|
||||
gpyr(_gpyr),
|
||||
dogpyr(_dogpyr) { }
|
||||
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
|
||||
for( int a = begin; a < end; a++ )
|
||||
{
|
||||
const int o = a / (nOctaveLayers + 2);
|
||||
const int i = a % (nOctaveLayers + 2);
|
||||
|
||||
const Mat& src1 = gpyr[o*(nOctaveLayers + 3) + i];
|
||||
const Mat& src2 = gpyr[o*(nOctaveLayers + 3) + i + 1];
|
||||
Mat& dst = dogpyr[o*(nOctaveLayers + 2) + i];
|
||||
subtract(src2, src1, dst, noArray(), DataType<sift_wt>::type);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int nOctaveLayers;
|
||||
const std::vector<Mat>& gpyr;
|
||||
std::vector<Mat>& dogpyr;
|
||||
};
|
||||
|
||||
void SIFT_Impl::buildDoGPyramid( const std::vector<Mat>& gpyr, std::vector<Mat>& dogpyr ) const
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
int nOctaves = (int)gpyr.size()/(nOctaveLayers + 3);
|
||||
dogpyr.resize( nOctaves*(nOctaveLayers + 2) );
|
||||
|
||||
parallel_for_(Range(0, nOctaves * (nOctaveLayers + 2)), buildDoGPyramidComputer(nOctaveLayers, gpyr, dogpyr));
|
||||
}
|
||||
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
// Computes a gradient orientation histogram at a specified pixel
|
||||
static float calcOrientationHist( const Mat& img, Point pt, int radius,
|
||||
float sigma, float* hist, int n )
|
||||
static
|
||||
float calcOrientationHist(
|
||||
const Mat& img, Point pt, int radius,
|
||||
float sigma, float* hist, int n
|
||||
)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
@ -449,9 +296,12 @@ static float calcOrientationHist( const Mat& img, Point pt, int radius,
|
||||
// Interpolates a scale-space extremum's location and scale to subpixel
|
||||
// accuracy to form an image feature. Rejects features with low contrast.
|
||||
// Based on Section 4 of Lowe's paper.
|
||||
static bool adjustLocalExtrema( const std::vector<Mat>& dog_pyr, KeyPoint& kpt, int octv,
|
||||
int& layer, int& r, int& c, int nOctaveLayers,
|
||||
float contrastThreshold, float edgeThreshold, float sigma )
|
||||
static
|
||||
bool adjustLocalExtrema(
|
||||
const std::vector<Mat>& dog_pyr, KeyPoint& kpt, int octv,
|
||||
int& layer, int& r, int& c, int nOctaveLayers,
|
||||
float contrastThreshold, float edgeThreshold, float sigma
|
||||
)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
@ -553,11 +403,12 @@ static bool adjustLocalExtrema( const std::vector<Mat>& dog_pyr, KeyPoint& kpt,
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
class findScaleSpaceExtremaComputer : public ParallelLoopBody
|
||||
class findScaleSpaceExtremaT
|
||||
{
|
||||
public:
|
||||
findScaleSpaceExtremaComputer(
|
||||
findScaleSpaceExtremaT(
|
||||
int _o,
|
||||
int _i,
|
||||
int _threshold,
|
||||
@ -570,7 +421,7 @@ public:
|
||||
double _sigma,
|
||||
const std::vector<Mat>& _gauss_pyr,
|
||||
const std::vector<Mat>& _dog_pyr,
|
||||
TLSData<std::vector<KeyPoint> > &_tls_kpts_struct)
|
||||
std::vector<KeyPoint>& kpts)
|
||||
|
||||
: o(_o),
|
||||
i(_i),
|
||||
@ -584,8 +435,11 @@ public:
|
||||
sigma(_sigma),
|
||||
gauss_pyr(_gauss_pyr),
|
||||
dog_pyr(_dog_pyr),
|
||||
tls_kpts_struct(_tls_kpts_struct) { }
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
||||
kpts_(kpts)
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
void process(const cv::Range& range)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
@ -593,15 +447,12 @@ public:
|
||||
const int end = range.end;
|
||||
|
||||
static const int n = SIFT_ORI_HIST_BINS;
|
||||
float hist[n];
|
||||
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) hist[n];
|
||||
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const Mat& prev = dog_pyr[idx-1];
|
||||
const Mat& next = dog_pyr[idx+1];
|
||||
|
||||
std::vector<KeyPoint> *tls_kpts = tls_kpts_struct.get();
|
||||
|
||||
KeyPoint kpt;
|
||||
for( int r = begin; r < end; r++)
|
||||
{
|
||||
const sift_wt* currptr = img.ptr<sift_wt>(r);
|
||||
@ -635,6 +486,7 @@ public:
|
||||
{
|
||||
CV_TRACE_REGION("pixel_candidate");
|
||||
|
||||
KeyPoint kpt;
|
||||
int r1 = r, c1 = c, layer = i;
|
||||
if( !adjustLocalExtrema(dog_pyr, kpt, o, layer, r1, c1,
|
||||
nOctaveLayers, (float)contrastThreshold,
|
||||
@ -659,9 +511,8 @@ public:
|
||||
kpt.angle = 360.f - (float)((360.f/n) * bin);
|
||||
if(std::abs(kpt.angle - 360.f) < FLT_EPSILON)
|
||||
kpt.angle = 0.f;
|
||||
{
|
||||
tls_kpts->push_back(kpt);
|
||||
}
|
||||
|
||||
kpts_.push_back(kpt);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -678,51 +529,42 @@ private:
|
||||
double sigma;
|
||||
const std::vector<Mat>& gauss_pyr;
|
||||
const std::vector<Mat>& dog_pyr;
|
||||
TLSData<std::vector<KeyPoint> > &tls_kpts_struct;
|
||||
std::vector<KeyPoint>& kpts_;
|
||||
};
|
||||
|
||||
//
|
||||
// Detects features at extrema in DoG scale space. Bad features are discarded
|
||||
// based on contrast and ratio of principal curvatures.
|
||||
void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& keypoints ) const
|
||||
} // namespace
|
||||
|
||||
|
||||
void findScaleSpaceExtrema(
|
||||
int octave,
|
||||
int layer,
|
||||
int threshold,
|
||||
int idx,
|
||||
int step,
|
||||
int cols,
|
||||
int nOctaveLayers,
|
||||
double contrastThreshold,
|
||||
double edgeThreshold,
|
||||
double sigma,
|
||||
const std::vector<Mat>& gauss_pyr,
|
||||
const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& kpts,
|
||||
const cv::Range& range)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int nOctaves = (int)gauss_pyr.size()/(nOctaveLayers + 3);
|
||||
const int threshold = cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE);
|
||||
|
||||
keypoints.clear();
|
||||
TLSDataAccumulator<std::vector<KeyPoint> > tls_kpts_struct;
|
||||
|
||||
for( int o = 0; o < nOctaves; o++ )
|
||||
for( int i = 1; i <= nOctaveLayers; i++ )
|
||||
{
|
||||
const int idx = o*(nOctaveLayers+2)+i;
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const int step = (int)img.step1();
|
||||
const int rows = img.rows, cols = img.cols;
|
||||
|
||||
parallel_for_(Range(SIFT_IMG_BORDER, rows-SIFT_IMG_BORDER),
|
||||
findScaleSpaceExtremaComputer(
|
||||
o, i, threshold, idx, step, cols,
|
||||
nOctaveLayers,
|
||||
contrastThreshold,
|
||||
edgeThreshold,
|
||||
sigma,
|
||||
gauss_pyr, dog_pyr, tls_kpts_struct));
|
||||
}
|
||||
|
||||
std::vector<std::vector<KeyPoint>*> kpt_vecs;
|
||||
tls_kpts_struct.gather(kpt_vecs);
|
||||
for (size_t i = 0; i < kpt_vecs.size(); ++i) {
|
||||
keypoints.insert(keypoints.end(), kpt_vecs[i]->begin(), kpt_vecs[i]->end());
|
||||
}
|
||||
findScaleSpaceExtremaT(octave, layer, threshold, idx,
|
||||
step, cols,
|
||||
nOctaveLayers, contrastThreshold, edgeThreshold, sigma,
|
||||
gauss_pyr, dog_pyr,
|
||||
kpts)
|
||||
.process(range);
|
||||
}
|
||||
|
||||
|
||||
static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float scl,
|
||||
int d, int n, float* dst )
|
||||
void calcSIFTDescriptor(
|
||||
const Mat& img, Point2f ptf, float ori, float scl,
|
||||
int d, int n, float* dst
|
||||
)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
@ -734,7 +576,7 @@ static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float sc
|
||||
float hist_width = SIFT_DESCR_SCL_FCTR * scl;
|
||||
int radius = cvRound(hist_width * 1.4142135623730951f * (d + 1) * 0.5f);
|
||||
// Clip the radius to the diagonal of the image to avoid autobuffer too large exception
|
||||
radius = std::min(radius, (int) sqrt(((double) img.cols)*img.cols + ((double) img.rows)*img.rows));
|
||||
radius = std::min(radius, (int)std::sqrt(((double) img.cols)*img.cols + ((double) img.rows)*img.rows));
|
||||
cos_t /= hist_width;
|
||||
sin_t /= hist_width;
|
||||
|
||||
@ -1016,175 +858,6 @@ static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float sc
|
||||
#endif
|
||||
}
|
||||
|
||||
class calcDescriptorsComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
calcDescriptorsComputer(const std::vector<Mat>& _gpyr,
|
||||
const std::vector<KeyPoint>& _keypoints,
|
||||
Mat& _descriptors,
|
||||
int _nOctaveLayers,
|
||||
int _firstOctave)
|
||||
: gpyr(_gpyr),
|
||||
keypoints(_keypoints),
|
||||
descriptors(_descriptors),
|
||||
nOctaveLayers(_nOctaveLayers),
|
||||
firstOctave(_firstOctave) { }
|
||||
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
|
||||
static const int d = SIFT_DESCR_WIDTH, n = SIFT_DESCR_HIST_BINS;
|
||||
|
||||
for ( int i = begin; i<end; i++ )
|
||||
{
|
||||
KeyPoint kpt = keypoints[i];
|
||||
int octave, layer;
|
||||
float scale;
|
||||
unpackOctave(kpt, octave, layer, scale);
|
||||
CV_Assert(octave >= firstOctave && layer <= nOctaveLayers+2);
|
||||
float size=kpt.size*scale;
|
||||
Point2f ptf(kpt.pt.x*scale, kpt.pt.y*scale);
|
||||
const Mat& img = gpyr[(octave - firstOctave)*(nOctaveLayers + 3) + layer];
|
||||
|
||||
float angle = 360.f - kpt.angle;
|
||||
if(std::abs(angle - 360.f) < FLT_EPSILON)
|
||||
angle = 0.f;
|
||||
calcSIFTDescriptor(img, ptf, angle, size*0.5f, d, n, descriptors.ptr<float>((int)i));
|
||||
}
|
||||
}
|
||||
private:
|
||||
const std::vector<Mat>& gpyr;
|
||||
const std::vector<KeyPoint>& keypoints;
|
||||
Mat& descriptors;
|
||||
int nOctaveLayers;
|
||||
int firstOctave;
|
||||
};
|
||||
|
||||
static void calcDescriptors(const std::vector<Mat>& gpyr, const std::vector<KeyPoint>& keypoints,
|
||||
Mat& descriptors, int nOctaveLayers, int firstOctave )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
parallel_for_(Range(0, static_cast<int>(keypoints.size())), calcDescriptorsComputer(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave));
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
SIFT_Impl::SIFT_Impl( int _nfeatures, int _nOctaveLayers,
|
||||
double _contrastThreshold, double _edgeThreshold, double _sigma )
|
||||
: nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers),
|
||||
contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma)
|
||||
{
|
||||
}
|
||||
|
||||
int SIFT_Impl::descriptorSize() const
|
||||
{
|
||||
return SIFT_DESCR_WIDTH*SIFT_DESCR_WIDTH*SIFT_DESCR_HIST_BINS;
|
||||
}
|
||||
|
||||
int SIFT_Impl::descriptorType() const
|
||||
{
|
||||
return CV_32F;
|
||||
}
|
||||
|
||||
int SIFT_Impl::defaultNorm() const
|
||||
{
|
||||
return NORM_L2;
|
||||
}
|
||||
|
||||
|
||||
void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray _descriptors,
|
||||
bool useProvidedKeypoints)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
int firstOctave = -1, actualNOctaves = 0, actualNLayers = 0;
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
|
||||
if( image.empty() || image.depth() != CV_8U )
|
||||
CV_Error( Error::StsBadArg, "image is empty or has incorrect depth (!=CV_8U)" );
|
||||
|
||||
if( !mask.empty() && mask.type() != CV_8UC1 )
|
||||
CV_Error( Error::StsBadArg, "mask has incorrect type (!=CV_8UC1)" );
|
||||
|
||||
if( useProvidedKeypoints )
|
||||
{
|
||||
firstOctave = 0;
|
||||
int maxOctave = INT_MIN;
|
||||
for( size_t i = 0; i < keypoints.size(); i++ )
|
||||
{
|
||||
int octave, layer;
|
||||
float scale;
|
||||
unpackOctave(keypoints[i], octave, layer, scale);
|
||||
firstOctave = std::min(firstOctave, octave);
|
||||
maxOctave = std::max(maxOctave, octave);
|
||||
actualNLayers = std::max(actualNLayers, layer-2);
|
||||
}
|
||||
|
||||
firstOctave = std::min(firstOctave, 0);
|
||||
CV_Assert( firstOctave >= -1 && actualNLayers <= nOctaveLayers );
|
||||
actualNOctaves = maxOctave - firstOctave + 1;
|
||||
}
|
||||
|
||||
Mat base = createInitialImage(image, firstOctave < 0, (float)sigma);
|
||||
std::vector<Mat> gpyr;
|
||||
int nOctaves = actualNOctaves > 0 ? actualNOctaves : cvRound(std::log( (double)std::min( base.cols, base.rows ) ) / std::log(2.) - 2) - firstOctave;
|
||||
|
||||
//double t, tf = getTickFrequency();
|
||||
//t = (double)getTickCount();
|
||||
buildGaussianPyramid(base, gpyr, nOctaves);
|
||||
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("pyramid construction time: %g\n", t*1000./tf);
|
||||
|
||||
if( !useProvidedKeypoints )
|
||||
{
|
||||
std::vector<Mat> dogpyr;
|
||||
buildDoGPyramid(gpyr, dogpyr);
|
||||
//t = (double)getTickCount();
|
||||
findScaleSpaceExtrema(gpyr, dogpyr, keypoints);
|
||||
KeyPointsFilter::removeDuplicatedSorted( keypoints );
|
||||
|
||||
if( nfeatures > 0 )
|
||||
KeyPointsFilter::retainBest(keypoints, nfeatures);
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("keypoint detection time: %g\n", t*1000./tf);
|
||||
|
||||
if( firstOctave < 0 )
|
||||
for( size_t i = 0; i < keypoints.size(); i++ )
|
||||
{
|
||||
KeyPoint& kpt = keypoints[i];
|
||||
float scale = 1.f/(float)(1 << -firstOctave);
|
||||
kpt.octave = (kpt.octave & ~255) | ((kpt.octave + firstOctave) & 255);
|
||||
kpt.pt *= scale;
|
||||
kpt.size *= scale;
|
||||
}
|
||||
|
||||
if( !mask.empty() )
|
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
else
|
||||
{
|
||||
// filter keypoints by mask
|
||||
//KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
|
||||
if( _descriptors.needed() )
|
||||
{
|
||||
//t = (double)getTickCount();
|
||||
int dsize = descriptorSize();
|
||||
_descriptors.create((int)keypoints.size(), dsize, CV_32F);
|
||||
Mat descriptors = _descriptors.getMat();
|
||||
|
||||
calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave);
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("descriptor extraction time: %g\n", t*1000./tf);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
} // namespace
|
||||
|
||||
Loading…
Reference in New Issue
Block a user