Merge pull request #18701 from TolyaTalamanov:at/introduce-config-for-ie-params
Expand ie::Params to support config * Add config to IE params * Add test * Remove comments from tests * Rename to pluginConfig * Add one more overloads for pluginConfig * Add more tests
This commit is contained in:
parent
6df92b3bca
commit
2a3cdba724
@ -11,6 +11,7 @@
|
||||
#include <string>
|
||||
#include <array>
|
||||
#include <tuple> // tuple, tuple_size
|
||||
#include <map>
|
||||
|
||||
#include <opencv2/gapi/opencv_includes.hpp>
|
||||
#include <opencv2/gapi/util/any.hpp>
|
||||
@ -42,6 +43,8 @@ enum class TraitAs: int
|
||||
IMAGE //!< G-API traits an associated cv::Mat as an image so creates an "image" blob (NCHW/NHWC, etc)
|
||||
};
|
||||
|
||||
using IEConfig = std::map<std::string, std::string>;
|
||||
|
||||
namespace detail {
|
||||
struct ParamDesc {
|
||||
std::string model_path;
|
||||
@ -63,6 +66,7 @@ namespace detail {
|
||||
enum class Kind { Load, Import };
|
||||
Kind kind;
|
||||
bool is_generic;
|
||||
IEConfig config;
|
||||
};
|
||||
} // namespace detail
|
||||
|
||||
@ -86,7 +90,8 @@ public:
|
||||
, std::tuple_size<typename Net::InArgs>::value // num_in
|
||||
, std::tuple_size<typename Net::OutArgs>::value // num_out
|
||||
, detail::ParamDesc::Kind::Load
|
||||
, false} {
|
||||
, false
|
||||
, {}} {
|
||||
};
|
||||
|
||||
Params(const std::string &model,
|
||||
@ -95,7 +100,8 @@ public:
|
||||
, std::tuple_size<typename Net::InArgs>::value // num_in
|
||||
, std::tuple_size<typename Net::OutArgs>::value // num_out
|
||||
, detail::ParamDesc::Kind::Import
|
||||
, false} {
|
||||
, false
|
||||
, {}} {
|
||||
};
|
||||
|
||||
Params<Net>& cfgInputLayers(const typename PortCfg<Net>::In &ll) {
|
||||
@ -121,6 +127,16 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
Params& pluginConfig(IEConfig&& cfg) {
|
||||
desc.config = std::move(cfg);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Params& pluginConfig(const IEConfig& cfg) {
|
||||
desc.config = cfg;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// BEGIN(G-API's network parametrization API)
|
||||
GBackend backend() const { return cv::gapi::ie::backend(); }
|
||||
std::string tag() const { return Net::tag(); }
|
||||
@ -138,15 +154,25 @@ public:
|
||||
const std::string &model,
|
||||
const std::string &weights,
|
||||
const std::string &device)
|
||||
: desc{ model, weights, device, {}, {}, {}, 0u, 0u, detail::ParamDesc::Kind::Load, true}, m_tag(tag) {
|
||||
: desc{ model, weights, device, {}, {}, {}, 0u, 0u, detail::ParamDesc::Kind::Load, true, {}}, m_tag(tag) {
|
||||
};
|
||||
|
||||
Params(const std::string &tag,
|
||||
const std::string &model,
|
||||
const std::string &device)
|
||||
: desc{ model, {}, device, {}, {}, {}, 0u, 0u, detail::ParamDesc::Kind::Import, true}, m_tag(tag) {
|
||||
: desc{ model, {}, device, {}, {}, {}, 0u, 0u, detail::ParamDesc::Kind::Import, true, {}}, m_tag(tag) {
|
||||
};
|
||||
|
||||
Params& pluginConfig(IEConfig&& cfg) {
|
||||
desc.config = std::move(cfg);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Params& pluginConfig(const IEConfig& cfg) {
|
||||
desc.config = cfg;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// BEGIN(G-API's network parametrization API)
|
||||
GBackend backend() const { return cv::gapi::ie::backend(); }
|
||||
std::string tag() const { return m_tag; }
|
||||
|
||||
@ -185,7 +185,8 @@ struct IEUnit {
|
||||
inputs = net.getInputsInfo();
|
||||
outputs = net.getOutputsInfo();
|
||||
} else if (params.kind == cv::gapi::ie::detail::ParamDesc::Kind::Import) {
|
||||
this_plugin = cv::gimpl::ie::wrap::getPlugin(params);
|
||||
this_plugin = cv::gimpl::ie::wrap::getPlugin(params);
|
||||
this_plugin.SetConfig(params.config);
|
||||
this_network = cv::gimpl::ie::wrap::importNetwork(this_plugin, params);
|
||||
// FIXME: ICNNetwork returns InputsDataMap/OutputsDataMap,
|
||||
// but ExecutableNetwork returns ConstInputsDataMap/ConstOutputsDataMap
|
||||
@ -225,6 +226,7 @@ struct IEUnit {
|
||||
// FIXME: In case importNetwork for fill inputs/outputs need to obtain ExecutableNetwork, but
|
||||
// for loadNetwork they can be obtained by using readNetwork
|
||||
non_const_this->this_plugin = cv::gimpl::ie::wrap::getPlugin(params);
|
||||
non_const_this->this_plugin.SetConfig(params.config);
|
||||
non_const_this->this_network = cv::gimpl::ie::wrap::loadNetwork(non_const_this->this_plugin, net, params);
|
||||
}
|
||||
|
||||
|
||||
@ -403,6 +403,108 @@ TEST(TestAgeGenderIE, GenericInfer)
|
||||
normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output");
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderIE, InvalidConfigGeneric)
|
||||
{
|
||||
initDLDTDataPath();
|
||||
|
||||
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
std::string device_id = "CPU";
|
||||
|
||||
// Configure & run G-API
|
||||
cv::GMat in;
|
||||
GInferInputs inputs;
|
||||
inputs["data"] = in;
|
||||
|
||||
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs);
|
||||
auto age = outputs.at("age_conv3");
|
||||
auto gender = outputs.at("prob");
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
|
||||
|
||||
auto pp = cv::gapi::ie::Params<cv::gapi::Generic>{"age-gender-generic",
|
||||
model_path,
|
||||
weights_path,
|
||||
device_id}.pluginConfig({{"unsupported_config", "some_value"}});
|
||||
|
||||
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderIE, CPUConfigGeneric)
|
||||
{
|
||||
initDLDTDataPath();
|
||||
|
||||
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
std::string device_id = "CPU";
|
||||
|
||||
// Configure & run G-API
|
||||
cv::GMat in;
|
||||
GInferInputs inputs;
|
||||
inputs["data"] = in;
|
||||
|
||||
auto outputs = cv::gapi::infer<cv::gapi::Generic>("age-gender-generic", inputs);
|
||||
auto age = outputs.at("age_conv3");
|
||||
auto gender = outputs.at("prob");
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
|
||||
|
||||
auto pp = cv::gapi::ie::Params<cv::gapi::Generic>{"age-gender-generic",
|
||||
model_path,
|
||||
weights_path,
|
||||
device_id}.pluginConfig({{"ENFORCE_BF16", "NO"}});
|
||||
|
||||
EXPECT_NO_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderIE, InvalidConfig)
|
||||
{
|
||||
initDLDTDataPath();
|
||||
|
||||
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
std::string device_id = "CPU";
|
||||
|
||||
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
|
||||
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
|
||||
|
||||
cv::GMat in;
|
||||
cv::GMat age, gender;
|
||||
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
|
||||
|
||||
auto pp = cv::gapi::ie::Params<AgeGender> {
|
||||
model_path, weights_path, device_id
|
||||
}.cfgOutputLayers({ "age_conv3", "prob" }).pluginConfig({{"unsupported_config", "some_value"}});
|
||||
|
||||
EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
TEST(TestAgeGenderIE, CPUConfig)
|
||||
{
|
||||
initDLDTDataPath();
|
||||
|
||||
std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml");
|
||||
std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin");
|
||||
std::string device_id = "CPU";
|
||||
|
||||
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
|
||||
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "test-age-gender");
|
||||
|
||||
cv::GMat in;
|
||||
cv::GMat age, gender;
|
||||
std::tie(age, gender) = cv::gapi::infer<AgeGender>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender));
|
||||
|
||||
auto pp = cv::gapi::ie::Params<AgeGender> {
|
||||
model_path, weights_path, device_id
|
||||
}.cfgOutputLayers({ "age_conv3", "prob" }).pluginConfig({{"ENFORCE_BF16", "NO"}});
|
||||
|
||||
EXPECT_NO_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}},
|
||||
cv::compile_args(cv::gapi::networks(pp))));
|
||||
}
|
||||
|
||||
} // namespace opencv_test
|
||||
|
||||
#endif // HAVE_INF_ENGINE
|
||||
|
||||
Loading…
Reference in New Issue
Block a user