Merge pull request #10364 from dkurt:dnn_smooth_tf_data_layout
This commit is contained in:
commit
325cbd7c84
@ -42,6 +42,14 @@ namespace
|
||||
|
||||
static int toNCHW[] = {0, 2, 3, 1};
|
||||
|
||||
// This values are used to indicate layer output's data layout where it's possible.
|
||||
enum DataLayout
|
||||
{
|
||||
DATA_LAYOUT_NHWC,
|
||||
DATA_LAYOUT_NCHW,
|
||||
DATA_LAYOUT_UNKNOWN
|
||||
};
|
||||
|
||||
typedef std::vector<std::pair<String, int> > StrIntVector;
|
||||
|
||||
struct Pin
|
||||
@ -608,6 +616,31 @@ static void addConstNodes(const tensorflow::GraphDef& net, std::map<String, int>
|
||||
}
|
||||
}
|
||||
|
||||
// If all inputs of specific layer have the same data layout we can say that
|
||||
// this layer's output has this data layout too. Returns DATA_LAYOUT_UNKNOWN otherwise.
|
||||
static int predictOutputDataLayout(const tensorflow::NodeDef& layer, const std::map<String, int>& data_layouts)
|
||||
{
|
||||
int layout = DATA_LAYOUT_UNKNOWN;
|
||||
std::map<String, int>::const_iterator it;
|
||||
for (int i = 0, n = layer.input_size(); i < n; ++i)
|
||||
{
|
||||
it = data_layouts.find(layer.input(i));
|
||||
if (it != data_layouts.end())
|
||||
{
|
||||
if (it->second == DATA_LAYOUT_UNKNOWN)
|
||||
return DATA_LAYOUT_UNKNOWN;
|
||||
else if (it->second != layout)
|
||||
{
|
||||
if (layout == DATA_LAYOUT_UNKNOWN)
|
||||
layout = it->second;
|
||||
else
|
||||
return DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
}
|
||||
}
|
||||
return layout;
|
||||
}
|
||||
|
||||
void TFImporter::populateNet(Net dstNet)
|
||||
{
|
||||
RemoveIdentityOps(netBin);
|
||||
@ -619,6 +652,8 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
int layersSize = net.node_size();
|
||||
|
||||
std::map<String, int> data_layouts;
|
||||
|
||||
// find all Const layers for params
|
||||
std::map<String, int> value_id;
|
||||
addConstNodes(netBin, value_id, layers_to_ignore);
|
||||
@ -636,6 +671,8 @@ void TFImporter::populateNet(Net dstNet)
|
||||
if(layers_to_ignore.find(name) != layers_to_ignore.end())
|
||||
continue;
|
||||
|
||||
data_layouts[name] = predictOutputDataLayout(layer, data_layouts);
|
||||
|
||||
if (type == "Conv2D" || type == "SpaceToBatchND" || type == "DepthwiseConv2dNative")
|
||||
{
|
||||
// The first node of dilated convolution subgraph.
|
||||
@ -731,6 +768,19 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
// one input only
|
||||
connect(layer_id, dstNet, parsePin(input), id, 0);
|
||||
|
||||
if (hasLayerAttr(layer, "data_format"))
|
||||
{
|
||||
std::string format = getLayerAttr(layer, "data_format").s();
|
||||
if (format == "NHWC")
|
||||
data_layouts[name] = DATA_LAYOUT_NHWC;
|
||||
else if (format == "NCHW")
|
||||
data_layouts[name] = DATA_LAYOUT_NCHW;
|
||||
else
|
||||
CV_Error(Error::StsParseError, "Unknown data_format value: " + format);
|
||||
}
|
||||
else
|
||||
data_layouts[name] = DATA_LAYOUT_NHWC;
|
||||
}
|
||||
else if (type == "BiasAdd" || type == "Add")
|
||||
{
|
||||
@ -806,22 +856,55 @@ void TFImporter::populateNet(Net dstNet)
|
||||
// one input only
|
||||
int input_blob_index = kernel_blob_index == 0 ? 1 : 0;
|
||||
connect(layer_id, dstNet, parsePin(layer.input(input_blob_index)), id, 0);
|
||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
else if (type == "Reshape")
|
||||
{
|
||||
layerParams.set("dim", parseDims(getConstBlob(layer, value_id, 1)));
|
||||
Pin inpId = parsePin(layer.input(0));
|
||||
DictValue newShape = parseDims(getConstBlob(layer, value_id, 1));
|
||||
|
||||
if (newShape.size() != 4 && data_layouts[layer.input(0)] == DATA_LAYOUT_NHWC)
|
||||
{
|
||||
LayerParams permLP;
|
||||
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
|
||||
permLP.set("order", DictValue::arrayInt<int*>(order, 4));
|
||||
|
||||
std::string permName = name + "/nchw";
|
||||
CV_Assert(layer_id.find(permName) == layer_id.end());
|
||||
int permId = dstNet.addLayer(permName, "Permute", permLP);
|
||||
layer_id[permName] = permId;
|
||||
connect(layer_id, dstNet, inpId, permId, 0);
|
||||
inpId = Pin(permName);
|
||||
}
|
||||
layerParams.set("dim", newShape);
|
||||
|
||||
int id = dstNet.addLayer(name, "Reshape", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
// one input only
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
connect(layer_id, dstNet, inpId, id, 0);
|
||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
else if (type == "Flatten")
|
||||
{
|
||||
Pin inpId = parsePin(layer.input(0));
|
||||
if (data_layouts[layer.input(0)] == DATA_LAYOUT_NHWC)
|
||||
{
|
||||
LayerParams permLP;
|
||||
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
|
||||
permLP.set("order", DictValue::arrayInt<int*>(order, 4));
|
||||
|
||||
std::string permName = name + "/nchw";
|
||||
CV_Assert(layer_id.find(permName) == layer_id.end());
|
||||
int permId = dstNet.addLayer(permName, "Permute", permLP);
|
||||
layer_id[permName] = permId;
|
||||
connect(layer_id, dstNet, inpId, permId, 0);
|
||||
inpId = Pin(permName);
|
||||
}
|
||||
int id = dstNet.addLayer(name, "Flatten", layerParams);
|
||||
layer_id[name] = id;
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
connect(layer_id, dstNet, inpId, id, 0);
|
||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
else if (type == "Transpose")
|
||||
{
|
||||
@ -830,16 +913,57 @@ void TFImporter::populateNet(Net dstNet)
|
||||
int* permData = (int*)perm.data;
|
||||
if (perm.total() == 4)
|
||||
{
|
||||
for (int i = 0; i < 4; ++i)
|
||||
permData[i] = toNCHW[permData[i]];
|
||||
// Only NHWC <-> NCHW permutations are allowed. OpenCV is always
|
||||
// keep NCHW layout this way.
|
||||
if (data_layouts[layer.input(0)] == DATA_LAYOUT_NHWC)
|
||||
{
|
||||
if (permData[0] == 0 && permData[1] == 3 && permData[2] == 1 && permData[3] == 2)
|
||||
{
|
||||
// in TensorFlow: NHWC->NCHW
|
||||
// in OpenCV: NCHW->NCHW
|
||||
data_layouts[name] = DATA_LAYOUT_NCHW;
|
||||
}
|
||||
else if (permData[0] == 0 && permData[1] == 1 && permData[2] == 2 && permData[3] == 3)
|
||||
{
|
||||
// in TensorFlow: NHWC->NHWC
|
||||
// in OpenCV: NCHW->NCHW
|
||||
data_layouts[name] = DATA_LAYOUT_NHWC;
|
||||
}
|
||||
else
|
||||
CV_Assert(Error::StsParseError, "Only NHWC <-> NCHW permutations are allowed.");
|
||||
}
|
||||
else if (data_layouts[layer.input(0)] == DATA_LAYOUT_NCHW)
|
||||
{
|
||||
if (permData[0] == 0 && permData[1] == 2 && permData[2] == 3 && permData[3] == 1)
|
||||
{
|
||||
// in TensorFlow: NCHW->NHWC
|
||||
// in OpenCV: NCHW->NCHW
|
||||
data_layouts[name] = DATA_LAYOUT_NHWC;
|
||||
}
|
||||
else if (permData[0] == 0 && permData[1] == 1 && permData[2] == 2 && permData[3] == 3)
|
||||
{
|
||||
// in TensorFlow: NCHW->NCHW
|
||||
// in OpenCV: NCHW->NCHW
|
||||
data_layouts[name] = DATA_LAYOUT_NCHW;
|
||||
}
|
||||
else
|
||||
CV_Assert(Error::StsParseError, "Only NHWC <-> NCHW permutations are allowed.");
|
||||
}
|
||||
int id = dstNet.addLayer(name, "Identity", layerParams);
|
||||
layer_id[name] = id;
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
}
|
||||
layerParams.set("order", DictValue::arrayInt<int*>(permData, perm.total()));
|
||||
else
|
||||
{
|
||||
layerParams.set("order", DictValue::arrayInt<int*>(permData, perm.total()));
|
||||
|
||||
int id = dstNet.addLayer(name, "Permute", layerParams);
|
||||
layer_id[name] = id;
|
||||
int id = dstNet.addLayer(name, "Permute", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
// one input only
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
// one input only
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
}
|
||||
else if (type == "Const")
|
||||
{
|
||||
@ -1207,6 +1331,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
// one input only
|
||||
connect(layer_id, dstNet, parsePin(layer.input(1)), id, 0);
|
||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
else if (type == "ResizeNearestNeighbor")
|
||||
{
|
||||
@ -1258,6 +1383,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
layer_id[name] = id;
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
connect(layer_id, dstNet, parsePin(layer.input(1)), id, 1);
|
||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
else if (type == "DetectionOutput")
|
||||
{
|
||||
@ -1288,6 +1414,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
layer_id[name] = id;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
connect(layer_id, dstNet, parsePin(layer.input(i)), id, i);
|
||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
else if (type == "Abs" || type == "Tanh" || type == "Sigmoid" ||
|
||||
type == "Relu" || type == "Elu" || type == "Softmax" ||
|
||||
|
||||
@ -159,6 +159,8 @@ TEST(Test_TensorFlow, deconvolution)
|
||||
TEST(Test_TensorFlow, matmul)
|
||||
{
|
||||
runTensorFlowNet("matmul");
|
||||
runTensorFlowNet("nhwc_reshape_matmul");
|
||||
runTensorFlowNet("nhwc_transpose_reshape_matmul");
|
||||
}
|
||||
|
||||
TEST(Test_TensorFlow, defun)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user