Merge pull request #14626 from dkurt:dnn_ie_slice_layer
This commit is contained in:
commit
483e9f341c
@ -214,8 +214,7 @@ PERF_TEST_P_(DNNTestNetwork, EAST_text_detection)
|
||||
PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE ||
|
||||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ||
|
||||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD))
|
||||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
||||
throw SkipTestException("");
|
||||
processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", "", Mat(cv::Size(320, 240), CV_32FC3));
|
||||
}
|
||||
|
||||
@ -110,15 +110,9 @@ public:
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
{
|
||||
return INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2018R5) &&
|
||||
sliceRanges.size() == 1 && sliceRanges[0].size() == 4;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
return backendId == DNN_BACKEND_OPENCV;
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE &&
|
||||
sliceRanges.size() == 1 && sliceRanges[0].size() == 4);
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
@ -264,39 +258,65 @@ public:
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE
|
||||
{
|
||||
#if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2018R5)
|
||||
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]);
|
||||
InferenceEngine::LayerParams lp;
|
||||
lp.name = name;
|
||||
lp.type = "Crop";
|
||||
lp.precision = InferenceEngine::Precision::FP32;
|
||||
std::shared_ptr<InferenceEngine::CropLayer> ieLayer(new InferenceEngine::CropLayer(lp));
|
||||
|
||||
CV_Assert(sliceRanges.size() == 1);
|
||||
|
||||
std::vector<size_t> axes, offsets, dims;
|
||||
int from, to, step;
|
||||
int numDims = sliceRanges[0].size();
|
||||
if (preferableTarget == DNN_TARGET_MYRIAD)
|
||||
{
|
||||
from = 1;
|
||||
to = sliceRanges[0].size() + 1;
|
||||
to = numDims;
|
||||
step = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
from = sliceRanges[0].size() - 1;
|
||||
from = numDims - 1;
|
||||
to = -1;
|
||||
step = -1;
|
||||
}
|
||||
for (int i = from; i != to; i += step)
|
||||
{
|
||||
ieLayer->axis.push_back(i);
|
||||
ieLayer->offset.push_back(sliceRanges[0][i].start);
|
||||
ieLayer->dim.push_back(sliceRanges[0][i].end - sliceRanges[0][i].start);
|
||||
axes.push_back(i);
|
||||
offsets.push_back(sliceRanges[0][i].start);
|
||||
dims.push_back(sliceRanges[0][i].size());
|
||||
}
|
||||
|
||||
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
|
||||
std::vector<size_t> outShape(numDims);
|
||||
for (int i = 0; i < numDims; ++i)
|
||||
outShape[numDims - 1 - i] = sliceRanges[0][i].size();
|
||||
|
||||
InferenceEngine::Builder::Layer ieLayer(name);
|
||||
ieLayer.setName(name);
|
||||
ieLayer.setType("Crop");
|
||||
ieLayer.getParameters()["axis"] = axes;
|
||||
ieLayer.getParameters()["dim"] = dims;
|
||||
ieLayer.getParameters()["offset"] = offsets;
|
||||
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(2));
|
||||
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1));
|
||||
ieLayer.getInputPorts()[1].setParameter("type", "weights");
|
||||
|
||||
// Fake blob which will be moved to inputs (as weights).
|
||||
auto shapeSource = InferenceEngine::make_shared_blob<float>(
|
||||
InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Layout::ANY, outShape);
|
||||
shapeSource->allocate();
|
||||
addConstantData("weights", shapeSource, ieLayer);
|
||||
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
||||
#else
|
||||
return Ptr<BackendNode>();
|
||||
InferenceEngine::LayerParams lp;
|
||||
lp.name = name;
|
||||
lp.type = "Crop";
|
||||
lp.precision = InferenceEngine::Precision::FP32;
|
||||
std::shared_ptr<InferenceEngine::CropLayer> ieLayer(new InferenceEngine::CropLayer(lp));
|
||||
ieLayer->axis = axes;
|
||||
ieLayer->offset = offsets;
|
||||
ieLayer->dim = dims;
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
||||
#endif // IE < R5
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
@ -396,7 +396,7 @@ TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16)
|
||||
Mat img = imread(findDataFile("dnn/googlenet_1.png", false));
|
||||
Mat inp = blobFromImage(img, 1.0, Size(320, 240), Scalar(103.939, 116.779, 123.68), false, false);
|
||||
// Output image has values in range [-143.526, 148.539].
|
||||
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.3 : 4e-5;
|
||||
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.4 : 4e-5;
|
||||
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7.28 : 2e-3;
|
||||
processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", inp, "", "", l1, lInf);
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user