converted watershed + pyrmeanshiftfilter to C++
This commit is contained in:
parent
06f4a56469
commit
59a5ba8938
@ -45,56 +45,59 @@
|
||||
* Watershed *
|
||||
\****************************************************************************************/
|
||||
|
||||
typedef struct CvWSNode
|
||||
namespace cv
|
||||
{
|
||||
struct CvWSNode* next;
|
||||
|
||||
struct WSNode
|
||||
{
|
||||
int next;
|
||||
int mask_ofs;
|
||||
int img_ofs;
|
||||
}
|
||||
CvWSNode;
|
||||
};
|
||||
|
||||
typedef struct CvWSQueue
|
||||
struct WSQueue
|
||||
{
|
||||
CvWSNode* first;
|
||||
CvWSNode* last;
|
||||
}
|
||||
CvWSQueue;
|
||||
WSQueue() { first = last = 0; }
|
||||
int first, last;
|
||||
};
|
||||
|
||||
static CvWSNode*
|
||||
icvAllocWSNodes( CvMemStorage* storage )
|
||||
|
||||
static int
|
||||
allocWSNodes( vector<WSNode>& storage )
|
||||
{
|
||||
CvWSNode* n = 0;
|
||||
int sz = (int)storage.size();
|
||||
int newsz = MAX(128, sz*3/2);
|
||||
|
||||
int i, count = (storage->block_size - sizeof(CvMemBlock))/sizeof(*n) - 1;
|
||||
storage.resize(newsz);
|
||||
if( sz == 0 )
|
||||
{
|
||||
storage[0].next = 0;
|
||||
sz = 1;
|
||||
}
|
||||
for( int i = sz; i < newsz-1; i++ )
|
||||
storage[i].next = i+1;
|
||||
storage[newsz-1].next = 0;
|
||||
return sz;
|
||||
}
|
||||
|
||||
n = (CvWSNode*)cvMemStorageAlloc( storage, count*sizeof(*n) );
|
||||
for( i = 0; i < count-1; i++ )
|
||||
n[i].next = n + i + 1;
|
||||
n[count-1].next = 0;
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvWatershed( const CvArr* srcarr, CvArr* dstarr )
|
||||
void cv::watershed( InputArray _src, InputOutputArray _markers )
|
||||
{
|
||||
const int IN_QUEUE = -2;
|
||||
const int WSHED = -1;
|
||||
const int NQ = 256;
|
||||
cv::Ptr<CvMemStorage> storage;
|
||||
|
||||
CvMat sstub, *src;
|
||||
CvMat dstub, *dst;
|
||||
CvSize size;
|
||||
CvWSNode* free_node = 0, *node;
|
||||
CvWSQueue q[NQ];
|
||||
Mat src = _src.getMat(), dst = _markers.getMat();
|
||||
Size size = src.size();
|
||||
|
||||
vector<WSNode> storage;
|
||||
int free_node = 0, node;
|
||||
WSQueue q[NQ];
|
||||
int active_queue;
|
||||
int i, j;
|
||||
int db, dg, dr;
|
||||
int* mask;
|
||||
uchar* img;
|
||||
int mstep, istep;
|
||||
int subs_tab[513];
|
||||
|
||||
// MAX(a,b) = b + MAX(a-b,0)
|
||||
@ -102,66 +105,51 @@ cvWatershed( const CvArr* srcarr, CvArr* dstarr )
|
||||
// MIN(a,b) = a - MAX(a-b,0)
|
||||
#define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])
|
||||
|
||||
#define ws_push(idx,mofs,iofs) \
|
||||
{ \
|
||||
if( !free_node ) \
|
||||
free_node = icvAllocWSNodes( storage );\
|
||||
node = free_node; \
|
||||
free_node = free_node->next;\
|
||||
node->next = 0; \
|
||||
node->mask_ofs = mofs; \
|
||||
node->img_ofs = iofs; \
|
||||
if( q[idx].last ) \
|
||||
q[idx].last->next=node; \
|
||||
else \
|
||||
q[idx].first = node; \
|
||||
q[idx].last = node; \
|
||||
#define ws_push(idx,mofs,iofs) \
|
||||
{ \
|
||||
if( !free_node ) \
|
||||
free_node = allocWSNodes( storage );\
|
||||
node = free_node; \
|
||||
free_node = storage[free_node].next;\
|
||||
storage[node].next = 0; \
|
||||
storage[node].mask_ofs = mofs; \
|
||||
storage[node].img_ofs = iofs; \
|
||||
if( q[idx].last ) \
|
||||
storage[q[idx].last].next=node; \
|
||||
else \
|
||||
q[idx].first = node; \
|
||||
q[idx].last = node; \
|
||||
}
|
||||
|
||||
#define ws_pop(idx,mofs,iofs) \
|
||||
{ \
|
||||
node = q[idx].first; \
|
||||
q[idx].first = node->next; \
|
||||
if( !node->next ) \
|
||||
q[idx].last = 0; \
|
||||
node->next = free_node; \
|
||||
free_node = node; \
|
||||
mofs = node->mask_ofs; \
|
||||
iofs = node->img_ofs; \
|
||||
#define ws_pop(idx,mofs,iofs) \
|
||||
{ \
|
||||
node = q[idx].first; \
|
||||
q[idx].first = storage[node].next; \
|
||||
if( !storage[node].next ) \
|
||||
q[idx].last = 0; \
|
||||
storage[node].next = free_node; \
|
||||
free_node = node; \
|
||||
mofs = storage[node].mask_ofs; \
|
||||
iofs = storage[node].img_ofs; \
|
||||
}
|
||||
|
||||
#define c_diff(ptr1,ptr2,diff) \
|
||||
{ \
|
||||
db = abs((ptr1)[0] - (ptr2)[0]);\
|
||||
dg = abs((ptr1)[1] - (ptr2)[1]);\
|
||||
dr = abs((ptr1)[2] - (ptr2)[2]);\
|
||||
diff = ws_max(db,dg); \
|
||||
diff = ws_max(diff,dr); \
|
||||
assert( 0 <= diff && diff <= 255 ); \
|
||||
#define c_diff(ptr1,ptr2,diff) \
|
||||
{ \
|
||||
db = std::abs((ptr1)[0] - (ptr2)[0]);\
|
||||
dg = std::abs((ptr1)[1] - (ptr2)[1]);\
|
||||
dr = std::abs((ptr1)[2] - (ptr2)[2]);\
|
||||
diff = ws_max(db,dg); \
|
||||
diff = ws_max(diff,dr); \
|
||||
assert( 0 <= diff && diff <= 255 ); \
|
||||
}
|
||||
|
||||
src = cvGetMat( srcarr, &sstub );
|
||||
dst = cvGetMat( dstarr, &dstub );
|
||||
CV_Assert( src.type() == CV_8UC3 && dst.type() == CV_32SC1 );
|
||||
CV_Assert( src.size() == dst.size() );
|
||||
|
||||
if( CV_MAT_TYPE(src->type) != CV_8UC3 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel input images are supported" );
|
||||
|
||||
if( CV_MAT_TYPE(dst->type) != CV_32SC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"Only 32-bit, 1-channel output images are supported" );
|
||||
|
||||
if( !CV_ARE_SIZES_EQ( src, dst ))
|
||||
CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
|
||||
|
||||
size = cvGetMatSize(src);
|
||||
storage = cvCreateMemStorage();
|
||||
|
||||
istep = src->step;
|
||||
img = src->data.ptr;
|
||||
mstep = dst->step / sizeof(mask[0]);
|
||||
mask = dst->data.i;
|
||||
|
||||
memset( q, 0, NQ*sizeof(q[0]) );
|
||||
const uchar* img = src.data;
|
||||
int istep = src.step/sizeof(img[0]);
|
||||
int* mask = dst.ptr<int>();
|
||||
int mstep = dst.step / sizeof(mask[0]);
|
||||
|
||||
for( i = 0; i < 256; i++ )
|
||||
subs_tab[i] = 0;
|
||||
@ -185,7 +173,7 @@ cvWatershed( const CvArr* srcarr, CvArr* dstarr )
|
||||
if( m[0] < 0 ) m[0] = 0;
|
||||
if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) )
|
||||
{
|
||||
uchar* ptr = img + j*3;
|
||||
const uchar* ptr = img + j*3;
|
||||
int idx = 256, t;
|
||||
if( m[-1] > 0 )
|
||||
c_diff( ptr, ptr - 3, idx );
|
||||
@ -221,8 +209,8 @@ cvWatershed( const CvArr* srcarr, CvArr* dstarr )
|
||||
return;
|
||||
|
||||
active_queue = i;
|
||||
img = src->data.ptr;
|
||||
mask = dst->data.i;
|
||||
img = src.data;
|
||||
mask = dst.ptr<int>();
|
||||
|
||||
// recursively fill the basins
|
||||
for(;;)
|
||||
@ -230,7 +218,7 @@ cvWatershed( const CvArr* srcarr, CvArr* dstarr )
|
||||
int mofs, iofs;
|
||||
int lab = 0, t;
|
||||
int* m;
|
||||
uchar* ptr;
|
||||
const uchar* ptr;
|
||||
|
||||
if( q[active_queue].first == 0 )
|
||||
{
|
||||
@ -303,23 +291,23 @@ cvWatershed( const CvArr* srcarr, CvArr* dstarr )
|
||||
}
|
||||
|
||||
|
||||
void cv::watershed( InputArray _src, InputOutputArray markers )
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
CvMat c_src = _src.getMat(), c_markers = markers.getMat();
|
||||
cvWatershed( &c_src, &c_markers );
|
||||
}
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* Meanshift *
|
||||
\****************************************************************************************/
|
||||
|
||||
CV_IMPL void
|
||||
cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
|
||||
double sp0, double sr, int max_level,
|
||||
CvTermCriteria termcrit )
|
||||
|
||||
void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
|
||||
double sp0, double sr, int max_level,
|
||||
TermCriteria termcrit )
|
||||
{
|
||||
Mat src0 = _src.getMat();
|
||||
|
||||
if( src0.empty() )
|
||||
return;
|
||||
|
||||
_dst.create( src0.size(), src0.type() );
|
||||
Mat dst0 = _dst.getMat();
|
||||
|
||||
const int cn = 3;
|
||||
const int MAX_LEVELS = 8;
|
||||
|
||||
@ -338,8 +326,7 @@ cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
|
||||
double sr2 = sr * sr;
|
||||
int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
|
||||
int tab[768];
|
||||
cv::Mat src0 = cv::cvarrToMat(srcarr);
|
||||
cv::Mat dst0 = cv::cvarrToMat(dstarr);
|
||||
|
||||
|
||||
if( src0.type() != CV_8UC3 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
|
||||
@ -351,9 +338,9 @@ cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
|
||||
CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
|
||||
|
||||
if( !(termcrit.type & CV_TERMCRIT_ITER) )
|
||||
termcrit.max_iter = 5;
|
||||
termcrit.max_iter = MAX(termcrit.max_iter,1);
|
||||
termcrit.max_iter = MIN(termcrit.max_iter,100);
|
||||
termcrit.maxCount = 5;
|
||||
termcrit.maxCount = MAX(termcrit.maxCount,1);
|
||||
termcrit.maxCount = MIN(termcrit.maxCount,100);
|
||||
if( !(termcrit.type & CV_TERMCRIT_EPS) )
|
||||
termcrit.epsilon = 1.f;
|
||||
termcrit.epsilon = MAX(termcrit.epsilon, 0.f);
|
||||
@ -435,7 +422,7 @@ cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
|
||||
c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];
|
||||
|
||||
// iterate meanshift procedure
|
||||
for( iter = 0; iter < termcrit.max_iter; iter++ )
|
||||
for( iter = 0; iter < termcrit.maxCount; iter++ )
|
||||
{
|
||||
uchar* ptr;
|
||||
int x, y, count = 0;
|
||||
@ -507,7 +494,7 @@ cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
|
||||
s1 = cvRound(s1*icount);
|
||||
s2 = cvRound(s2*icount);
|
||||
|
||||
stop_flag = (x0 == x1 && y0 == y1) || abs(x1-x0) + abs(y1-y0) +
|
||||
stop_flag = (x0 == x1 && y0 == y1) || std::abs(x1-x0) + std::abs(y1-y0) +
|
||||
tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
|
||||
tab[s2 - c2 + 255] <= termcrit.epsilon;
|
||||
|
||||
@ -526,16 +513,24 @@ cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
|
||||
}
|
||||
}
|
||||
|
||||
void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
|
||||
double sp, double sr, int maxLevel,
|
||||
TermCriteria termcrit )
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_IMPL void cvWatershed( const CvArr* _src, CvArr* _markers )
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
|
||||
if( src.empty() )
|
||||
return;
|
||||
|
||||
_dst.create( src.size(), src.type() );
|
||||
CvMat c_src = src, c_dst = _dst.getMat();
|
||||
cvPyrMeanShiftFiltering( &c_src, &c_dst, sp, sr, maxLevel, termcrit );
|
||||
cv::Mat src = cv::cvarrToMat(_src), markers = cv::cvarrToMat(_markers);
|
||||
cv::watershed(src, markers);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
|
||||
double sp0, double sr, int max_level,
|
||||
CvTermCriteria termcrit )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr);
|
||||
cv::Mat dst = cv::cvarrToMat(dstarr);
|
||||
|
||||
cv::pyrMeanShiftFiltering(src, dst, sp0, sr, max_level, termcrit);
|
||||
}
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user