Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
5a86592e93
@ -684,7 +684,8 @@ VSX_IMPL_LOAD_L8(vec_double2, double)
|
||||
#endif
|
||||
|
||||
// absolute difference
|
||||
#ifndef vec_absd
|
||||
#ifndef _ARCH_PWR9
|
||||
# undef vec_absd
|
||||
# define vec_absd(a, b) vec_sub(vec_max(a, b), vec_min(a, b))
|
||||
#endif
|
||||
|
||||
|
||||
@ -909,7 +909,8 @@ static bool ipp_calchist(const Mat &image, Mat &hist, int histSize, const float*
|
||||
#endif
|
||||
|
||||
// IPP_DISABLE_HISTOGRAM - https://github.com/opencv/opencv/issues/11544
|
||||
if (uniform && (ranges[0][1] - ranges[0][0]) != histSize)
|
||||
// and https://github.com/opencv/opencv/issues/21595
|
||||
if ((uniform && (ranges[0][1] - ranges[0][0]) != histSize) || abs(ranges[0][0]) != cvFloor(ranges[0][0]))
|
||||
return false;
|
||||
|
||||
Mat ihist = hist;
|
||||
|
||||
@ -1993,6 +1993,38 @@ TEST(Imgproc_Hist_Calc, badarg)
|
||||
EXPECT_NO_THROW(cv::calcBackProject(&img, 1, channels, hist, backProj, NULL, 1, true));
|
||||
}
|
||||
|
||||
TEST(Imgproc_Hist_Calc, IPP_ranges_with_equal_exponent_21595)
|
||||
{
|
||||
const int channels[] = { 0 };
|
||||
float range1[] = { -0.5f, 1.5f };
|
||||
const float* ranges[] = { range1 };
|
||||
const int hist_size[] = { 2 };
|
||||
|
||||
uint8_t m[1][6] = { { 0, 1, 0, 1 , 1, 1 } };
|
||||
cv::Mat images_u = Mat(1, 6, CV_8UC1, m);
|
||||
cv::Mat histogram_u;
|
||||
cv::calcHist(&images_u, 1, channels, noArray(), histogram_u, 1, hist_size, ranges);
|
||||
|
||||
ASSERT_EQ(histogram_u.at<float>(0), 2.f) << "0 not counts correctly, res: " << histogram_u.at<float>(0);
|
||||
ASSERT_EQ(histogram_u.at<float>(1), 4.f) << "1 not counts correctly, res: " << histogram_u.at<float>(0);
|
||||
}
|
||||
|
||||
TEST(Imgproc_Hist_Calc, IPP_ranges_with_nonequal_exponent_21595)
|
||||
{
|
||||
const int channels[] = { 0 };
|
||||
float range1[] = { -1.3f, 1.5f };
|
||||
const float* ranges[] = { range1 };
|
||||
const int hist_size[] = { 3 };
|
||||
|
||||
uint8_t m[1][6] = { { 0, 1, 0, 1 , 1, 1 } };
|
||||
cv::Mat images_u = Mat(1, 6, CV_8UC1, m);
|
||||
cv::Mat histogram_u;
|
||||
cv::calcHist(&images_u, 1, channels, noArray(), histogram_u, 1, hist_size, ranges);
|
||||
|
||||
ASSERT_EQ(histogram_u.at<float>(0), 0.f) << "not equal to zero, res: " << histogram_u.at<float>(0);
|
||||
ASSERT_EQ(histogram_u.at<float>(1), 2.f) << "0 not counts correctly, res: " << histogram_u.at<float>(1);
|
||||
ASSERT_EQ(histogram_u.at<float>(2), 4.f) << "1 not counts correctly, res: " << histogram_u.at<float>(2);
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
/* End Of File */
|
||||
|
||||
@ -383,7 +383,7 @@ public:
|
||||
};
|
||||
enum DescriptorStorageFormat { DESCR_FORMAT_COL_BY_COL, DESCR_FORMAT_ROW_BY_ROW };
|
||||
|
||||
/**@brief Creates the HOG descriptor and detector with default params.
|
||||
/**@brief Creates the HOG descriptor and detector with default parameters.
|
||||
|
||||
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )
|
||||
*/
|
||||
@ -419,6 +419,8 @@ public:
|
||||
{}
|
||||
|
||||
/** @overload
|
||||
|
||||
Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
|
||||
@param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.
|
||||
*/
|
||||
CV_WRAP HOGDescriptor(const String& filename)
|
||||
@ -457,19 +459,19 @@ public:
|
||||
*/
|
||||
CV_WRAP virtual void setSVMDetector(InputArray svmdetector);
|
||||
|
||||
/** @brief Reads HOGDescriptor parameters from a cv::FileNode.
|
||||
/** @brief Reads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file node.
|
||||
@param fn File node
|
||||
*/
|
||||
virtual bool read(FileNode& fn);
|
||||
|
||||
/** @brief Stores HOGDescriptor parameters in a cv::FileStorage.
|
||||
/** @brief Stores HOGDescriptor parameters and coefficients for the linear SVM classifier in a file storage.
|
||||
@param fs File storage
|
||||
@param objname Object name
|
||||
*/
|
||||
virtual void write(FileStorage& fs, const String& objname) const;
|
||||
|
||||
/** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
|
||||
@param filename Path of the file to read.
|
||||
/** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
|
||||
@param filename Name of the file to read.
|
||||
@param objname The optional name of the node to read (if empty, the first top-level node will be used).
|
||||
*/
|
||||
CV_WRAP virtual bool load(const String& filename, const String& objname = String());
|
||||
@ -542,13 +544,14 @@ public:
|
||||
@param winStride Window stride. It must be a multiple of block stride.
|
||||
@param padding Padding
|
||||
@param scale Coefficient of the detection window increase.
|
||||
@param finalThreshold Final threshold
|
||||
@param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered
|
||||
by many rectangles. 0 means not to perform grouping.
|
||||
@param useMeanshiftGrouping indicates grouping algorithm
|
||||
*/
|
||||
CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
|
||||
CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
|
||||
Size winStride = Size(), Size padding = Size(), double scale = 1.05,
|
||||
double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
|
||||
double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const;
|
||||
|
||||
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
|
||||
of rectangles.
|
||||
@ -560,13 +563,14 @@ public:
|
||||
@param winStride Window stride. It must be a multiple of block stride.
|
||||
@param padding Padding
|
||||
@param scale Coefficient of the detection window increase.
|
||||
@param finalThreshold Final threshold
|
||||
@param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered
|
||||
by many rectangles. 0 means not to perform grouping.
|
||||
@param useMeanshiftGrouping indicates grouping algorithm
|
||||
*/
|
||||
virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
|
||||
double hitThreshold = 0, Size winStride = Size(),
|
||||
Size padding = Size(), double scale = 1.05,
|
||||
double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;
|
||||
double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const;
|
||||
|
||||
/** @brief Computes gradients and quantized gradient orientations.
|
||||
@param img Matrix contains the image to be computed
|
||||
|
||||
@ -1886,7 +1886,7 @@ static bool ocl_detectMultiScale(InputArray _img, std::vector<Rect> &found_locat
|
||||
void HOGDescriptor::detectMultiScale(
|
||||
InputArray _img, std::vector<Rect>& foundLocations, std::vector<double>& foundWeights,
|
||||
double hitThreshold, Size winStride, Size padding,
|
||||
double scale0, double finalThreshold, bool useMeanshiftGrouping) const
|
||||
double scale0, double groupThreshold, bool useMeanshiftGrouping) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
@ -1912,7 +1912,7 @@ void HOGDescriptor::detectMultiScale(
|
||||
|
||||
CV_OCL_RUN(_img.dims() <= 2 && _img.type() == CV_8UC1 && scale0 > 1 && winStride.width % blockStride.width == 0 &&
|
||||
winStride.height % blockStride.height == 0 && padding == Size(0,0) && _img.isUMat(),
|
||||
ocl_detectMultiScale(_img, foundLocations, levelScale, hitThreshold, winStride, finalThreshold, oclSvmDetector,
|
||||
ocl_detectMultiScale(_img, foundLocations, levelScale, hitThreshold, winStride, groupThreshold, oclSvmDetector,
|
||||
blockSize, cellSize, nbins, blockStride, winSize, gammaCorrection, L2HysThreshold, (float)getWinSigma(), free_coef, signedGradient));
|
||||
|
||||
std::vector<Rect> allCandidates;
|
||||
@ -1933,21 +1933,21 @@ void HOGDescriptor::detectMultiScale(
|
||||
std::copy(tempWeights.begin(), tempWeights.end(), back_inserter(foundWeights));
|
||||
|
||||
if ( useMeanshiftGrouping )
|
||||
groupRectangles_meanshift(foundLocations, foundWeights, foundScales, finalThreshold, winSize);
|
||||
groupRectangles_meanshift(foundLocations, foundWeights, foundScales, groupThreshold, winSize);
|
||||
else
|
||||
groupRectangles(foundLocations, foundWeights, (int)finalThreshold, 0.2);
|
||||
groupRectangles(foundLocations, foundWeights, (int)groupThreshold, 0.2);
|
||||
clipObjects(imgSize, foundLocations, 0, &foundWeights);
|
||||
}
|
||||
|
||||
void HOGDescriptor::detectMultiScale(InputArray img, std::vector<Rect>& foundLocations,
|
||||
double hitThreshold, Size winStride, Size padding,
|
||||
double scale0, double finalThreshold, bool useMeanshiftGrouping) const
|
||||
double scale0, double groupThreshold, bool useMeanshiftGrouping) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
std::vector<double> foundWeights;
|
||||
detectMultiScale(img, foundLocations, foundWeights, hitThreshold, winStride,
|
||||
padding, scale0, finalThreshold, useMeanshiftGrouping);
|
||||
padding, scale0, groupThreshold, useMeanshiftGrouping);
|
||||
}
|
||||
|
||||
std::vector<float> HOGDescriptor::getDefaultPeopleDetector()
|
||||
|
||||
@ -587,8 +587,8 @@ void DpSeamFinder::computeGradients(const Mat &image1, const Mat &image2)
|
||||
bool DpSeamFinder::hasOnlyOneNeighbor(int comp)
|
||||
{
|
||||
std::set<std::pair<int, int> >::iterator begin, end;
|
||||
begin = lower_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits<int>::min()));
|
||||
end = upper_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits<int>::max()));
|
||||
begin = edges_.lower_bound(std::make_pair(comp, std::numeric_limits<int>::min()));
|
||||
end = edges_.upper_bound(std::make_pair(comp, std::numeric_limits<int>::max()));
|
||||
return ++begin == end;
|
||||
}
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user