Merge pull request #9308 from alalek:akaze_fixes
This commit is contained in:
commit
5c961169cc
@ -15,6 +15,10 @@
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#ifdef HAVE_OPENCL // OpenCL is not well supported
|
||||
#undef HAVE_OPENCL
|
||||
#endif
|
||||
|
||||
// Namespaces
|
||||
namespace cv
|
||||
{
|
||||
@ -251,38 +255,41 @@ private:
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
static inline bool
|
||||
ocl_non_linear_diffusion_step(const UMat& Lt, const UMat& Lf, UMat& Lstep, float step_size)
|
||||
ocl_non_linear_diffusion_step(InputArray Lt_, InputArray Lf_, OutputArray Lstep_, float step_size)
|
||||
{
|
||||
if(!Lt.isContinuous())
|
||||
return false;
|
||||
if (!Lt_.isContinuous())
|
||||
return false;
|
||||
|
||||
size_t globalSize[] = {(size_t)Lt.cols, (size_t)Lt.rows};
|
||||
UMat Lt = Lt_.getUMat(), Lf = Lf_.getUMat(), Lstep = Lstep_.getUMat();
|
||||
|
||||
ocl::Kernel ker("AKAZE_nld_step_scalar", ocl::features2d::akaze_oclsrc);
|
||||
if( ker.empty() )
|
||||
return false;
|
||||
size_t globalSize[] = {(size_t)Lt.cols, (size_t)Lt.rows};
|
||||
|
||||
return ker.args(
|
||||
ocl::KernelArg::ReadOnly(Lt),
|
||||
ocl::KernelArg::PtrReadOnly(Lf),
|
||||
ocl::KernelArg::PtrWriteOnly(Lstep),
|
||||
step_size).run(2, globalSize, 0, true);
|
||||
ocl::Kernel ker("AKAZE_nld_step_scalar", ocl::features2d::akaze_oclsrc);
|
||||
if (ker.empty())
|
||||
return false;
|
||||
|
||||
return ker.args(
|
||||
ocl::KernelArg::ReadOnly(Lt),
|
||||
ocl::KernelArg::PtrReadOnly(Lf),
|
||||
ocl::KernelArg::PtrWriteOnly(Lstep),
|
||||
step_size)
|
||||
.run(2, globalSize, 0, true);
|
||||
}
|
||||
#endif // HAVE_OPENCL
|
||||
|
||||
static inline void
|
||||
non_linear_diffusion_step(const UMat& Lt, const UMat& Lf, UMat& Lstep, float step_size)
|
||||
non_linear_diffusion_step(InputArray Lt, InputArray Lf, OutputArray Lstep, float step_size)
|
||||
{
|
||||
CV_INSTRUMENT_REGION()
|
||||
|
||||
Lstep.create(Lt.size(), Lt.type());
|
||||
|
||||
CV_OCL_RUN(true, ocl_non_linear_diffusion_step(Lt, Lf, Lstep, step_size));
|
||||
#ifdef HAVE_OPENCL
|
||||
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Lstep.isUMat()), ocl_non_linear_diffusion_step(Lt, Lf, Lstep, step_size));
|
||||
#endif
|
||||
|
||||
// when on CPU UMats should be already allocated on CPU so getMat here is basicallly no-op
|
||||
Mat Mstep = Lstep.getMat(ACCESS_WRITE);
|
||||
parallel_for_(Range(0, Lt.rows), NonLinearScalarDiffusionStep(Lt.getMat(ACCESS_READ),
|
||||
Lf.getMat(ACCESS_READ), Mstep, step_size));
|
||||
Mat Mstep = Lstep.getMat();
|
||||
parallel_for_(Range(0, Lt.rows()), NonLinearScalarDiffusionStep(Lt.getMat(), Lf.getMat(), Mstep, step_size));
|
||||
}
|
||||
|
||||
/**
|
||||
@ -347,25 +354,28 @@ compute_kcontrast(const cv::Mat& Lx, const cv::Mat& Ly, float perc, int nbins)
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
static inline bool
|
||||
ocl_pm_g2(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast)
|
||||
ocl_pm_g2(InputArray Lx_, InputArray Ly_, OutputArray Lflow_, float kcontrast)
|
||||
{
|
||||
int total = Lx.rows * Lx.cols;
|
||||
size_t globalSize[] = {(size_t)total};
|
||||
UMat Lx = Lx_.getUMat(), Ly = Ly_.getUMat(), Lflow = Lflow_.getUMat();
|
||||
|
||||
ocl::Kernel ker("AKAZE_pm_g2", ocl::features2d::akaze_oclsrc);
|
||||
if( ker.empty() )
|
||||
return false;
|
||||
int total = Lx.rows * Lx.cols;
|
||||
size_t globalSize[] = {(size_t)total};
|
||||
|
||||
return ker.args(
|
||||
ocl::KernelArg::PtrReadOnly(Lx),
|
||||
ocl::KernelArg::PtrReadOnly(Ly),
|
||||
ocl::KernelArg::PtrWriteOnly(Lflow),
|
||||
kcontrast, total).run(1, globalSize, 0, true);
|
||||
ocl::Kernel ker("AKAZE_pm_g2", ocl::features2d::akaze_oclsrc);
|
||||
if (ker.empty())
|
||||
return false;
|
||||
|
||||
return ker.args(
|
||||
ocl::KernelArg::PtrReadOnly(Lx),
|
||||
ocl::KernelArg::PtrReadOnly(Ly),
|
||||
ocl::KernelArg::PtrWriteOnly(Lflow),
|
||||
kcontrast, total)
|
||||
.run(1, globalSize, 0, true);
|
||||
}
|
||||
#endif // HAVE_OPENCL
|
||||
|
||||
static inline void
|
||||
compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast, int diffusivity)
|
||||
compute_diffusivity(InputArray Lx, InputArray Ly, OutputArray Lflow, float kcontrast, int diffusivity)
|
||||
{
|
||||
CV_INSTRUMENT_REGION()
|
||||
|
||||
@ -376,7 +386,9 @@ compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast
|
||||
pm_g1(Lx, Ly, Lflow, kcontrast);
|
||||
break;
|
||||
case KAZE::DIFF_PM_G2:
|
||||
CV_OCL_RUN(true, ocl_pm_g2(Lx, Ly, Lflow, kcontrast));
|
||||
#ifdef HAVE_OPENCL
|
||||
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Lflow.isUMat()), ocl_pm_g2(Lx, Ly, Lflow, kcontrast));
|
||||
#endif
|
||||
pm_g2(Lx, Ly, Lflow, kcontrast);
|
||||
break;
|
||||
case KAZE::DIFF_WEICKERT:
|
||||
@ -391,32 +403,6 @@ compute_diffusivity(const UMat& Lx, const UMat& Ly, UMat& Lflow, float kcontrast
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Fetches pyramid from the gpu.
|
||||
* @details Setups mapping for matrices that might be probably on the GPU, if the
|
||||
* code executes with OpenCL. This will setup MLx, MLy, Mdet members in the pyramid with
|
||||
* mapping to respective UMats. This must be called before CPU-only parts of AKAZE, that work
|
||||
* only on these Mats.
|
||||
*
|
||||
* This prevents mapping/unmapping overhead (and possible uploads/downloads) that would occur, if
|
||||
* we just create Mats from UMats each time we need it later. This has devastating effects on OCL
|
||||
* performace.
|
||||
*
|
||||
* @param evolution Pyramid to download
|
||||
*/
|
||||
static inline void downloadPyramid(std::vector<Evolution>& evolution)
|
||||
{
|
||||
CV_INSTRUMENT_REGION()
|
||||
|
||||
for (size_t i = 0; i < evolution.size(); ++i) {
|
||||
Evolution& e = evolution[i];
|
||||
e.Mx = e.Lx.getMat(ACCESS_READ);
|
||||
e.My = e.Ly.getMat(ACCESS_READ);
|
||||
e.Mt = e.Lt.getMat(ACCESS_READ);
|
||||
e.Mdet = e.Ldet.getMat(ACCESS_READ);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This method creates the nonlinear scale space for a given image
|
||||
* @param img Input image for which the nonlinear scale space needs to be created
|
||||
@ -435,12 +421,11 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img)
|
||||
if (evolution_.size() == 1) {
|
||||
// we don't need to compute kcontrast factor
|
||||
Compute_Determinant_Hessian_Response();
|
||||
downloadPyramid(evolution_);
|
||||
return;
|
||||
}
|
||||
|
||||
// derivatives, flow and diffusion step
|
||||
UMat Lx, Ly, Lsmooth, Lflow, Lstep;
|
||||
Mat Lx, Ly, Lsmooth, Lflow, Lstep;
|
||||
|
||||
// compute derivatives for computing k contrast
|
||||
GaussianBlur(img, Lsmooth, Size(5, 5), 1.0f, 1.0f, BORDER_REPLICATE);
|
||||
@ -448,8 +433,7 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img)
|
||||
Scharr(Lsmooth, Ly, CV_32F, 0, 1, 1, 0, BORDER_DEFAULT);
|
||||
Lsmooth.release();
|
||||
// compute the kcontrast factor
|
||||
float kcontrast = compute_kcontrast(Lx.getMat(ACCESS_READ), Ly.getMat(ACCESS_READ),
|
||||
options_.kcontrast_percentile, options_.kcontrast_nbins);
|
||||
float kcontrast = compute_kcontrast(Lx, Ly, options_.kcontrast_percentile, options_.kcontrast_nbins);
|
||||
|
||||
// Now generate the rest of evolution levels
|
||||
for (size_t i = 1; i < evolution_.size(); i++) {
|
||||
@ -483,31 +467,30 @@ void AKAZEFeatures::Create_Nonlinear_Scale_Space(InputArray img)
|
||||
}
|
||||
|
||||
Compute_Determinant_Hessian_Response();
|
||||
downloadPyramid(evolution_);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
static inline bool
|
||||
ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy,
|
||||
UMat& Ldet, float sigma)
|
||||
ocl_compute_determinant(InputArray Lxx_, InputArray Lxy_, InputArray Lyy_, OutputArray Ldet_, float sigma)
|
||||
{
|
||||
const int total = Lxx.rows * Lxx.cols;
|
||||
size_t globalSize[] = {(size_t)total};
|
||||
UMat Lxx = Lxx_.getUMat(), Lxy = Lxy_.getUMat(), Lyy = Lyy_.getUMat(), Ldet = Ldet_.getUMat();
|
||||
|
||||
ocl::Kernel ker("AKAZE_compute_determinant", ocl::features2d::akaze_oclsrc);
|
||||
if( ker.empty() )
|
||||
return false;
|
||||
const int total = Lxx.rows * Lxx.cols;
|
||||
size_t globalSize[] = {(size_t)total};
|
||||
|
||||
return ker.args(
|
||||
ocl::KernelArg::PtrReadOnly(Lxx),
|
||||
ocl::KernelArg::PtrReadOnly(Lxy),
|
||||
ocl::KernelArg::PtrReadOnly(Lyy),
|
||||
ocl::KernelArg::PtrWriteOnly(Ldet),
|
||||
sigma, total).run(1, globalSize, 0, true);
|
||||
ocl::Kernel ker("AKAZE_compute_determinant", ocl::features2d::akaze_oclsrc);
|
||||
if (ker.empty())
|
||||
return false;
|
||||
|
||||
return ker.args(
|
||||
ocl::KernelArg::PtrReadOnly(Lxx),
|
||||
ocl::KernelArg::PtrReadOnly(Lxy),
|
||||
ocl::KernelArg::PtrReadOnly(Lyy),
|
||||
ocl::KernelArg::PtrWriteOnly(Ldet),
|
||||
sigma, total)
|
||||
.run(1, globalSize, 0, true);
|
||||
}
|
||||
#endif // HAVE_OPENCL
|
||||
|
||||
@ -521,27 +504,30 @@ ocl_compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy,
|
||||
* @param Ldet output determinant
|
||||
* @param sigma determinant will be scaled by this sigma
|
||||
*/
|
||||
static inline void compute_determinant(const UMat& Lxx, const UMat& Lxy, const UMat& Lyy,
|
||||
UMat& Ldet, float sigma)
|
||||
static inline void compute_determinant(InputArray Lxx, InputArray Lxy, InputArray Lyy, OutputArray Ldet, float sigma)
|
||||
{
|
||||
CV_INSTRUMENT_REGION()
|
||||
CV_INSTRUMENT_REGION()
|
||||
|
||||
Ldet.create(Lxx.size(), Lxx.type());
|
||||
Ldet.create(Lxx.size(), Lxx.type());
|
||||
|
||||
CV_OCL_RUN(true, ocl_compute_determinant(Lxx, Lxy, Lyy, Ldet, sigma));
|
||||
|
||||
// output determinant
|
||||
Mat Mxx = Lxx.getMat(ACCESS_READ), Mxy = Lxy.getMat(ACCESS_READ), Myy = Lyy.getMat(ACCESS_READ);
|
||||
Mat Mdet = Ldet.getMat(ACCESS_WRITE);
|
||||
float *lxx = Mxx.ptr<float>();
|
||||
float *lxy = Mxy.ptr<float>();
|
||||
float *lyy = Myy.ptr<float>();
|
||||
float *ldet = Mdet.ptr<float>();
|
||||
const int total = Lxx.cols * Lxx.rows;
|
||||
for (int j = 0; j < total; j++) {
|
||||
ldet[j] = (lxx[j] * lyy[j] - lxy[j] * lxy[j]) * sigma;
|
||||
}
|
||||
#ifdef HAVE_OPENCL
|
||||
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(Ldet.isUMat()), ocl_compute_determinant(Lxx, Lxy, Lyy, Ldet, sigma));
|
||||
#endif
|
||||
|
||||
// output determinant
|
||||
Mat Mxx = Lxx.getMat(), Mxy = Lxy.getMat(), Myy = Lyy.getMat(), Mdet = Ldet.getMat();
|
||||
const int W = Mxx.cols, H = Mxx.rows;
|
||||
for (int y = 0; y < H; y++)
|
||||
{
|
||||
float *lxx = Mxx.ptr<float>(y);
|
||||
float *lxy = Mxy.ptr<float>(y);
|
||||
float *lyy = Myy.ptr<float>(y);
|
||||
float *ldet = Mdet.ptr<float>(y);
|
||||
for (int x = 0; x < W; x++)
|
||||
{
|
||||
ldet[x] = (lxx[x] * lyy[x] - lxy[x] * lxy[x]) * sigma;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class DeterminantHessianResponse : public ParallelLoopBody
|
||||
@ -554,7 +540,7 @@ public:
|
||||
|
||||
void operator()(const Range& range) const
|
||||
{
|
||||
UMat Lxx, Lxy, Lyy;
|
||||
Mat Lxx, Lxy, Lyy;
|
||||
|
||||
for (int i = range.start; i < range.end; i++)
|
||||
{
|
||||
@ -670,16 +656,16 @@ public:
|
||||
const Evolution &e = (*evolution_)[i];
|
||||
Mat &kpts = (*keypoints_by_layers_)[i];
|
||||
// this mask will hold positions of keypoints in this level
|
||||
kpts = Mat::zeros(e.Mdet.size(), CV_8UC1);
|
||||
kpts = Mat::zeros(e.Ldet.size(), CV_8UC1);
|
||||
|
||||
// if border is too big we shouldn't search any keypoints
|
||||
if (e.border + 1 >= e.Ldet.rows)
|
||||
continue;
|
||||
|
||||
const float * prev = e.Mdet.ptr<float>(e.border - 1);
|
||||
const float * curr = e.Mdet.ptr<float>(e.border );
|
||||
const float * next = e.Mdet.ptr<float>(e.border + 1);
|
||||
const float * ldet = e.Mdet.ptr<float>();
|
||||
const float * prev = e.Ldet.ptr<float>(e.border - 1);
|
||||
const float * curr = e.Ldet.ptr<float>(e.border );
|
||||
const float * next = e.Ldet.ptr<float>(e.border + 1);
|
||||
const float * ldet = e.Ldet.ptr<float>();
|
||||
uchar *mask = kpts.ptr<uchar>();
|
||||
const int search_radius = e.sigma_size; // size of keypoint in this level
|
||||
|
||||
@ -743,8 +729,8 @@ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_laye
|
||||
const Mat &keypoints = keypoints_by_layers[i];
|
||||
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>();
|
||||
uchar *const kpts_prev = keypoints_by_layers[i-1].ptr<uchar>();
|
||||
const float *const ldet = evolution_[i].Mdet.ptr<float>();
|
||||
const float *const ldet_prev = evolution_[i-1].Mdet.ptr<float>();
|
||||
const float *const ldet = evolution_[i].Ldet.ptr<float>();
|
||||
const float *const ldet_prev = evolution_[i-1].Ldet.ptr<float>();
|
||||
// ratios are just powers of 2
|
||||
const int diff_ratio = (int)evolution_[i].octave_ratio / (int)evolution_[i-1].octave_ratio;
|
||||
const int search_radius = evolution_[i].sigma_size * diff_ratio; // size of keypoint in this level
|
||||
@ -775,8 +761,8 @@ void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<Mat>& keypoints_by_laye
|
||||
const Mat &keypoints = keypoints_by_layers[i];
|
||||
const uchar *const kpts = keypoints_by_layers[i].ptr<uchar>();
|
||||
uchar *const kpts_next = keypoints_by_layers[i+1].ptr<uchar>();
|
||||
const float *const ldet = evolution_[i].Mdet.ptr<float>();
|
||||
const float *const ldet_next = evolution_[i+1].Mdet.ptr<float>();
|
||||
const float *const ldet = evolution_[i].Ldet.ptr<float>();
|
||||
const float *const ldet_next = evolution_[i+1].Ldet.ptr<float>();
|
||||
// ratios are just powers of 2, i+1 ratio is always greater or equal to i
|
||||
const int diff_ratio = (int)evolution_[i+1].octave_ratio / (int)evolution_[i].octave_ratio;
|
||||
const int search_radius = evolution_[i+1].sigma_size; // size of keypoints in upper level
|
||||
@ -814,7 +800,7 @@ void AKAZEFeatures::Do_Subpixel_Refinement(
|
||||
|
||||
for (size_t i = 0; i < keypoints_by_layers.size(); i++) {
|
||||
const Evolution &e = evolution_[i];
|
||||
const float * const ldet = e.Mdet.ptr<float>();
|
||||
const float * const ldet = e.Ldet.ptr<float>();
|
||||
const float ratio = e.octave_ratio;
|
||||
const int cols = e.Ldet.cols;
|
||||
const Mat& keypoints = keypoints_by_layers[i];
|
||||
@ -1308,7 +1294,7 @@ void Compute_Main_Orientation(KeyPoint& kpt, const std::vector<Evolution>& evolu
|
||||
// Sample derivatives responses for the points within radius of 6*scale
|
||||
const int ang_size = 109;
|
||||
float resX[ang_size], resY[ang_size];
|
||||
Sample_Derivative_Response_Radius6(e.Mx, e.My, x0, y0, scale, resX, resY);
|
||||
Sample_Derivative_Response_Radius6(e.Lx, e.Ly, x0, y0, scale, resX, resY);
|
||||
|
||||
// Compute the angle of each gradient vector
|
||||
float Ang[ang_size];
|
||||
@ -1445,8 +1431,8 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const
|
||||
ratio = (float)(1 << kpt.octave);
|
||||
scale = cvRound(0.5f*kpt.size / ratio);
|
||||
const int level = kpt.class_id;
|
||||
Mat Lx = evolution[level].Mx;
|
||||
Mat Ly = evolution[level].My;
|
||||
const Mat Lx = evolution[level].Lx;
|
||||
const Mat Ly = evolution[level].Ly;
|
||||
yf = kpt.pt.y / ratio;
|
||||
xf = kpt.pt.x / ratio;
|
||||
|
||||
@ -1480,25 +1466,28 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const
|
||||
//Get the gaussian weighted x and y responses
|
||||
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.50f*scale);
|
||||
|
||||
y1 = (int)(sample_y - .5f);
|
||||
x1 = (int)(sample_x - .5f);
|
||||
y1 = cvFloor(sample_y);
|
||||
x1 = cvFloor(sample_x);
|
||||
|
||||
y2 = (int)(sample_y + .5f);
|
||||
x2 = (int)(sample_x + .5f);
|
||||
y2 = y1 + 1;
|
||||
x2 = x1 + 1;
|
||||
|
||||
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows)
|
||||
continue; // FIXIT Boundaries
|
||||
|
||||
fx = sample_x - x1;
|
||||
fy = sample_y - y1;
|
||||
|
||||
res1 = *(Lx.ptr<float>(y1)+x1);
|
||||
res2 = *(Lx.ptr<float>(y1)+x2);
|
||||
res3 = *(Lx.ptr<float>(y2)+x1);
|
||||
res4 = *(Lx.ptr<float>(y2)+x2);
|
||||
res1 = Lx.at<float>(y1, x1);
|
||||
res2 = Lx.at<float>(y1, x2);
|
||||
res3 = Lx.at<float>(y2, x1);
|
||||
res4 = Lx.at<float>(y2, x2);
|
||||
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
||||
|
||||
res1 = *(Ly.ptr<float>(y1)+x1);
|
||||
res2 = *(Ly.ptr<float>(y1)+x2);
|
||||
res3 = *(Ly.ptr<float>(y2)+x1);
|
||||
res4 = *(Ly.ptr<float>(y2)+x2);
|
||||
res1 = Ly.at<float>(y1, x1);
|
||||
res2 = Ly.at<float>(y1, x2);
|
||||
res3 = Ly.at<float>(y2, x1);
|
||||
res4 = Ly.at<float>(y2, x2);
|
||||
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
||||
|
||||
rx = gauss_s1*rx;
|
||||
@ -1533,8 +1522,9 @@ void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const
|
||||
// convert to unit vector
|
||||
len = sqrt(len);
|
||||
|
||||
const float len_inv = 1.0f / len;
|
||||
for (i = 0; i < dsize; i++) {
|
||||
desc[i] /= len;
|
||||
desc[i] *= len_inv;
|
||||
}
|
||||
}
|
||||
|
||||
@ -1575,8 +1565,8 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f
|
||||
scale = cvRound(0.5f*kpt.size / ratio);
|
||||
angle = kpt.angle * static_cast<float>(CV_PI / 180.f);
|
||||
const int level = kpt.class_id;
|
||||
Mat Lx = evolution[level].Mx;
|
||||
Mat Ly = evolution[level].My;
|
||||
const Mat Lx = evolution[level].Lx;
|
||||
const Mat Ly = evolution[level].Ly;
|
||||
yf = kpt.pt.y / ratio;
|
||||
xf = kpt.pt.x / ratio;
|
||||
co = cos(angle);
|
||||
@ -1613,34 +1603,28 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f
|
||||
// Get the gaussian weighted x and y responses
|
||||
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
|
||||
|
||||
y1 = cvRound(sample_y - 0.5f);
|
||||
x1 = cvRound(sample_x - 0.5f);
|
||||
y1 = cvFloor(sample_y);
|
||||
x1 = cvFloor(sample_x);
|
||||
|
||||
y2 = cvRound(sample_y + 0.5f);
|
||||
x2 = cvRound(sample_x + 0.5f);
|
||||
y2 = y1 + 1;
|
||||
x2 = x1 + 1;
|
||||
|
||||
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
|
||||
// clip values so they fit into the image
|
||||
const MatSize& size = Lx.size;
|
||||
y1 = min(max(0, y1), size[0] - 1);
|
||||
x1 = min(max(0, x1), size[1] - 1);
|
||||
y2 = min(max(0, y2), size[0] - 1);
|
||||
x2 = min(max(0, x2), size[1] - 1);
|
||||
CV_DbgAssert(Lx.size == Ly.size);
|
||||
if (x1 < 0 || y1 < 0 || x2 >= Lx.cols || y2 >= Lx.rows)
|
||||
continue; // FIXIT Boundaries
|
||||
|
||||
fx = sample_x - x1;
|
||||
fy = sample_y - y1;
|
||||
|
||||
res1 = *(Lx.ptr<float>(y1, x1));
|
||||
res2 = *(Lx.ptr<float>(y1, x2));
|
||||
res3 = *(Lx.ptr<float>(y2, x1));
|
||||
res4 = *(Lx.ptr<float>(y2, x2));
|
||||
res1 = Lx.at<float>(y1, x1);
|
||||
res2 = Lx.at<float>(y1, x2);
|
||||
res3 = Lx.at<float>(y2, x1);
|
||||
res4 = Lx.at<float>(y2, x2);
|
||||
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
||||
|
||||
res1 = *(Ly.ptr<float>(y1, x1));
|
||||
res2 = *(Ly.ptr<float>(y1, x2));
|
||||
res3 = *(Ly.ptr<float>(y2, x1));
|
||||
res4 = *(Ly.ptr<float>(y2, x2));
|
||||
res1 = Ly.at<float>(y1, x1);
|
||||
res2 = Ly.at<float>(y1, x2);
|
||||
res3 = Ly.at<float>(y2, x1);
|
||||
res4 = Ly.at<float>(y2, x2);
|
||||
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
||||
|
||||
// Get the x and y derivatives on the rotated axis
|
||||
@ -1675,8 +1659,9 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f
|
||||
// convert to unit vector
|
||||
len = sqrt(len);
|
||||
|
||||
const float len_inv = 1.0f / len;
|
||||
for (i = 0; i < dsize; i++) {
|
||||
desc[i] /= len;
|
||||
desc[i] *= len_inv;
|
||||
}
|
||||
}
|
||||
|
||||
@ -1689,13 +1674,6 @@ void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, f
|
||||
*/
|
||||
void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc, int desc_size) const {
|
||||
|
||||
float di = 0.0, dx = 0.0, dy = 0.0;
|
||||
float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0;
|
||||
float sample_x = 0.0, sample_y = 0.0, ratio = 0.0;
|
||||
int x1 = 0, y1 = 0;
|
||||
int nsamples = 0, scale = 0;
|
||||
int dcount1 = 0, dcount2 = 0;
|
||||
|
||||
const AKAZEOptions & options = *options_;
|
||||
const std::vector<Evolution>& evolution = *evolution_;
|
||||
|
||||
@ -1705,14 +1683,14 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons
|
||||
float values[16*max_channels];
|
||||
|
||||
// Get the information from the keypoint
|
||||
ratio = (float)(1 << kpt.octave);
|
||||
scale = cvRound(0.5f*kpt.size / ratio);
|
||||
const float ratio = (float)(1 << kpt.octave);
|
||||
const int scale = cvRound(0.5f*kpt.size / ratio);
|
||||
const int level = kpt.class_id;
|
||||
Mat Lx = evolution[level].Mx;
|
||||
Mat Ly = evolution[level].My;
|
||||
Mat Lt = evolution[level].Mt;
|
||||
yf = kpt.pt.y / ratio;
|
||||
xf = kpt.pt.x / ratio;
|
||||
const Mat Lx = evolution[level].Lx;
|
||||
const Mat Ly = evolution[level].Ly;
|
||||
const Mat Lt = evolution[level].Lt;
|
||||
const float yf = kpt.pt.y / ratio;
|
||||
const float xf = kpt.pt.x / ratio;
|
||||
|
||||
// For 2x2 grid, 3x3 grid and 4x4 grid
|
||||
const int pattern_size = options_->descriptor_pattern_size;
|
||||
@ -1726,27 +1704,31 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons
|
||||
memset(desc, 0, desc_size);
|
||||
|
||||
// For the three grids
|
||||
int dcount1 = 0;
|
||||
for (int z = 0; z < 3; z++) {
|
||||
dcount2 = 0;
|
||||
int dcount2 = 0;
|
||||
const int step = sample_step[z];
|
||||
for (int i = -pattern_size; i < pattern_size; i += step) {
|
||||
for (int j = -pattern_size; j < pattern_size; j += step) {
|
||||
di = dx = dy = 0.0;
|
||||
nsamples = 0;
|
||||
float di = 0.0, dx = 0.0, dy = 0.0;
|
||||
|
||||
for (int k = i; k < i + step; k++) {
|
||||
for (int l = j; l < j + step; l++) {
|
||||
int nsamples = 0;
|
||||
for (int k = 0; k < step; k++) {
|
||||
for (int l = 0; l < step; l++) {
|
||||
|
||||
// Get the coordinates of the sample point
|
||||
sample_y = yf + l*scale;
|
||||
sample_x = xf + k*scale;
|
||||
const float sample_y = yf + (l+j)*scale;
|
||||
const float sample_x = xf + (k+i)*scale;
|
||||
|
||||
y1 = cvRound(sample_y);
|
||||
x1 = cvRound(sample_x);
|
||||
const int y1 = cvRound(sample_y);
|
||||
const int x1 = cvRound(sample_x);
|
||||
|
||||
ri = *(Lt.ptr<float>(y1)+x1);
|
||||
rx = *(Lx.ptr<float>(y1)+x1);
|
||||
ry = *(Ly.ptr<float>(y1)+x1);
|
||||
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols)
|
||||
continue; // Boundaries
|
||||
|
||||
const float ri = Lt.at<float>(y1, x1);
|
||||
const float rx = Lx.at<float>(y1, x1);
|
||||
const float ry = Ly.at<float>(y1, x1);
|
||||
|
||||
di += ri;
|
||||
dx += rx;
|
||||
@ -1755,9 +1737,13 @@ void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(cons
|
||||
}
|
||||
}
|
||||
|
||||
di /= nsamples;
|
||||
dx /= nsamples;
|
||||
dy /= nsamples;
|
||||
if (nsamples > 0)
|
||||
{
|
||||
const float nsamples_inv = 1.0f / nsamples;
|
||||
di *= nsamples_inv;
|
||||
dx *= nsamples_inv;
|
||||
dy *= nsamples_inv;
|
||||
}
|
||||
|
||||
float *val = &values[dcount2*max_channels];
|
||||
*(val) = di;
|
||||
@ -1794,17 +1780,20 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st
|
||||
const std::vector<Evolution>& evolution = *evolution_;
|
||||
int pattern_size = options_->descriptor_pattern_size;
|
||||
int chan = options_->descriptor_channels;
|
||||
int valpos = 0;
|
||||
Mat Lx = evolution[level].Mx;
|
||||
Mat Ly = evolution[level].My;
|
||||
Mat Lt = evolution[level].Mt;
|
||||
const Mat Lx = evolution[level].Lx;
|
||||
const Mat Ly = evolution[level].Ly;
|
||||
const Mat Lt = evolution[level].Lt;
|
||||
|
||||
const Size size = Lt.size();
|
||||
CV_Assert(size == Lx.size());
|
||||
CV_Assert(size == Ly.size());
|
||||
|
||||
int valpos = 0;
|
||||
for (int i = -pattern_size; i < pattern_size; i += sample_step) {
|
||||
for (int j = -pattern_size; j < pattern_size; j += sample_step) {
|
||||
float di, dx, dy;
|
||||
di = dx = dy = 0.0;
|
||||
int nsamples = 0;
|
||||
float di = 0.0f, dx = 0.0f, dy = 0.0f;
|
||||
|
||||
int nsamples = 0;
|
||||
for (int k = i; k < i + sample_step; k++) {
|
||||
for (int l = j; l < j + sample_step; l++) {
|
||||
float sample_y = yf + (l*co * scale + k*si*scale);
|
||||
@ -1813,20 +1802,15 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st
|
||||
int y1 = cvRound(sample_y);
|
||||
int x1 = cvRound(sample_x);
|
||||
|
||||
// fix crash: indexing with out-of-bounds index, this might happen near the edges of image
|
||||
// clip values so they fit into the image
|
||||
const MatSize& size = Lt.size;
|
||||
CV_DbgAssert(size == Lx.size &&
|
||||
size == Ly.size);
|
||||
y1 = min(max(0, y1), size[0] - 1);
|
||||
x1 = min(max(0, x1), size[1] - 1);
|
||||
if (y1 < 0 || y1 >= Lt.rows || x1 < 0 || x1 >= Lt.cols)
|
||||
continue; // Boundaries
|
||||
|
||||
float ri = *(Lt.ptr<float>(y1, x1));
|
||||
float ri = Lt.at<float>(y1, x1);
|
||||
di += ri;
|
||||
|
||||
if(chan > 1) {
|
||||
float rx = *(Lx.ptr<float>(y1, x1));
|
||||
float ry = *(Ly.ptr<float>(y1, x1));
|
||||
float rx = Lx.at<float>(y1, x1);
|
||||
float ry = Ly.at<float>(y1, x1);
|
||||
if (chan == 2) {
|
||||
dx += sqrtf(rx*rx + ry*ry);
|
||||
}
|
||||
@ -1840,20 +1824,25 @@ void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_st
|
||||
nsamples++;
|
||||
}
|
||||
}
|
||||
di /= nsamples;
|
||||
dx /= nsamples;
|
||||
dy /= nsamples;
|
||||
|
||||
if (nsamples > 0)
|
||||
{
|
||||
const float nsamples_inv = 1.0f / nsamples;
|
||||
di *= nsamples_inv;
|
||||
dx *= nsamples_inv;
|
||||
dy *= nsamples_inv;
|
||||
}
|
||||
|
||||
values[valpos] = di;
|
||||
if (chan > 1) {
|
||||
values[valpos + 1] = dx;
|
||||
}
|
||||
if (chan > 2) {
|
||||
values[valpos + 2] = dy;
|
||||
values[valpos + 2] = dy;
|
||||
}
|
||||
valpos += chan;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MLDB_Full_Descriptor_Invoker::MLDB_Binary_Comparisons(float* values, unsigned char* desc,
|
||||
@ -1931,10 +1920,8 @@ void MLDB_Full_Descriptor_Invoker::Get_MLDB_Full_Descriptor(const KeyPoint& kpt,
|
||||
*/
|
||||
void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc, int desc_size) const {
|
||||
|
||||
float di = 0.f, dx = 0.f, dy = 0.f;
|
||||
float rx = 0.f, ry = 0.f;
|
||||
float sample_x = 0.f, sample_y = 0.f;
|
||||
int x1 = 0, y1 = 0;
|
||||
|
||||
const AKAZEOptions & options = *options_;
|
||||
const std::vector<Evolution>& evolution = *evolution_;
|
||||
@ -1944,9 +1931,9 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint&
|
||||
int scale = cvRound(0.5f*kpt.size / ratio);
|
||||
float angle = kpt.angle * static_cast<float>(CV_PI / 180.f);
|
||||
const int level = kpt.class_id;
|
||||
Mat Lx = evolution[level].Mx;
|
||||
Mat Ly = evolution[level].My;
|
||||
Mat Lt = evolution[level].Mt;
|
||||
const Mat Lx = evolution[level].Lx;
|
||||
const Mat Ly = evolution[level].Ly;
|
||||
const Mat Lt = evolution[level].Lt;
|
||||
float yf = kpt.pt.y / ratio;
|
||||
float xf = kpt.pt.x / ratio;
|
||||
float co = cos(angle);
|
||||
@ -1957,7 +1944,7 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint&
|
||||
const int max_channels = 3;
|
||||
const int channels = options.descriptor_channels;
|
||||
CV_Assert(channels <= max_channels);
|
||||
float values[(4 + 9 + 16)*max_channels];
|
||||
float values[(4 + 9 + 16)*max_channels] = { 0 };
|
||||
|
||||
// Sample everything, but only do the comparisons
|
||||
const int pattern_size = options.descriptor_pattern_size;
|
||||
@ -1972,9 +1959,7 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint&
|
||||
const int *coords = descriptorSamples_.ptr<int>(i);
|
||||
CV_Assert(coords[0] >= 0 && coords[0] < 3);
|
||||
const int sample_step = sample_steps[coords[0]];
|
||||
di = 0.0f;
|
||||
dx = 0.0f;
|
||||
dy = 0.0f;
|
||||
float di = 0.f, dx = 0.f, dy = 0.f;
|
||||
|
||||
for (int k = coords[1]; k < coords[1] + sample_step; k++) {
|
||||
for (int l = coords[2]; l < coords[2] + sample_step; l++) {
|
||||
@ -1983,14 +1968,17 @@ void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint&
|
||||
sample_y = yf + (l*scale*co + k*scale*si);
|
||||
sample_x = xf + (-l*scale*si + k*scale*co);
|
||||
|
||||
y1 = cvRound(sample_y);
|
||||
x1 = cvRound(sample_x);
|
||||
const int y1 = cvRound(sample_y);
|
||||
const int x1 = cvRound(sample_x);
|
||||
|
||||
di += *(Lt.ptr<float>(y1)+x1);
|
||||
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows)
|
||||
continue; // Boundaries
|
||||
|
||||
di += Lt.at<float>(y1, x1);
|
||||
|
||||
if (options.descriptor_channels > 1) {
|
||||
rx = *(Lx.ptr<float>(y1)+x1);
|
||||
ry = *(Ly.ptr<float>(y1)+x1);
|
||||
rx = Lx.at<float>(y1, x1);
|
||||
ry = Ly.at<float>(y1, x1);
|
||||
|
||||
if (options.descriptor_channels == 2) {
|
||||
dx += sqrtf(rx*rx + ry*ry);
|
||||
@ -2051,14 +2039,17 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(
|
||||
float ratio = (float)(1 << kpt.octave);
|
||||
int scale = cvRound(0.5f*kpt.size / ratio);
|
||||
const int level = kpt.class_id;
|
||||
Mat Lx = evolution[level].Mx;
|
||||
Mat Ly = evolution[level].My;
|
||||
Mat Lt = evolution[level].Mt;
|
||||
const Mat Lx = evolution[level].Lx;
|
||||
const Mat Ly = evolution[level].Ly;
|
||||
const Mat Lt = evolution[level].Lt;
|
||||
float yf = kpt.pt.y / ratio;
|
||||
float xf = kpt.pt.x / ratio;
|
||||
|
||||
// Allocate memory for the matrix of values
|
||||
Mat values ((4 + 9 + 16)*options.descriptor_channels, 1, CV_32FC1);
|
||||
const int max_channels = 3;
|
||||
const int channels = options.descriptor_channels;
|
||||
CV_Assert(channels <= max_channels);
|
||||
float values[(4 + 9 + 16)*max_channels] = { 0 };
|
||||
|
||||
const int pattern_size = options.descriptor_pattern_size;
|
||||
CV_Assert((pattern_size & 1) == 0);
|
||||
@ -2083,11 +2074,15 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(
|
||||
|
||||
y1 = cvRound(sample_y);
|
||||
x1 = cvRound(sample_x);
|
||||
di += *(Lt.ptr<float>(y1)+x1);
|
||||
|
||||
if (x1 < 0 || y1 < 0 || x1 >= Lt.cols || y1 >= Lt.rows)
|
||||
continue; // Boundaries
|
||||
|
||||
di += Lt.at<float>(y1, x1);
|
||||
|
||||
if (options.descriptor_channels > 1) {
|
||||
rx = *(Lx.ptr<float>(y1)+x1);
|
||||
ry = *(Ly.ptr<float>(y1)+x1);
|
||||
rx = Lx.at<float>(y1, x1);
|
||||
ry = Ly.at<float>(y1, x1);
|
||||
|
||||
if (options.descriptor_channels == 2) {
|
||||
dx += sqrtf(rx*rx + ry*ry);
|
||||
@ -2100,26 +2095,26 @@ void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(
|
||||
}
|
||||
}
|
||||
|
||||
*(values.ptr<float>(options.descriptor_channels*i)) = di;
|
||||
float* pValues = &values[channels * i];
|
||||
pValues[0] = di;
|
||||
|
||||
if (options.descriptor_channels == 2) {
|
||||
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
|
||||
pValues[1] = dx;
|
||||
}
|
||||
else if (options.descriptor_channels == 3) {
|
||||
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
|
||||
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy;
|
||||
pValues[1] = dx;
|
||||
pValues[2] = dy;
|
||||
}
|
||||
}
|
||||
|
||||
// Do the comparisons
|
||||
const float *vals = values.ptr<float>(0);
|
||||
const int *comps = descriptorBits_.ptr<int>(0);
|
||||
|
||||
CV_Assert(divUp(descriptorBits_.rows, 8) == desc_size);
|
||||
memset(desc, 0, desc_size);
|
||||
|
||||
for (int i = 0; i<descriptorBits_.rows; i++) {
|
||||
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) {
|
||||
if (values[comps[2 * i]] > values[comps[2 * i + 1]]) {
|
||||
desc[i / 8] |= (1 << (i % 8));
|
||||
}
|
||||
}
|
||||
@ -2149,7 +2144,8 @@ void generateDescriptorSubsample(Mat& sampleList, Mat& comparisons, int nbits,
|
||||
}
|
||||
ssz *= nchannels;
|
||||
|
||||
CV_Assert(nbits <= ssz); // Descriptor size can't be bigger than full descriptor
|
||||
CV_Assert(ssz == 162*nchannels);
|
||||
CV_Assert(nbits <= ssz && "Descriptor size can't be bigger than full descriptor (486 = 162*3 - 3 channels)");
|
||||
|
||||
// Since the full descriptor is usually under 10k elements, we pick
|
||||
// the selection from the full matrix. We take as many samples per
|
||||
|
||||
@ -29,15 +29,10 @@ struct Evolution
|
||||
border = 0;
|
||||
}
|
||||
|
||||
UMat Lx, Ly; ///< First order spatial derivatives
|
||||
UMat Lt; ///< Evolution image
|
||||
UMat Lsmooth; ///< Smoothed image, used only for computing determinant, released afterwards
|
||||
UMat Ldet; ///< Detector response
|
||||
|
||||
// the same as above, holding CPU mapping to UMats above
|
||||
Mat Mx, My;
|
||||
Mat Mt;
|
||||
Mat Mdet;
|
||||
Mat Lx, Ly; ///< First order spatial derivatives
|
||||
Mat Lt; ///< Evolution image
|
||||
Mat Lsmooth; ///< Smoothed image, used only for computing determinant, released afterwards
|
||||
Mat Ldet; ///< Detector response
|
||||
|
||||
Size size; ///< Size of the layer
|
||||
float etime; ///< Evolution time
|
||||
|
||||
@ -43,6 +43,7 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace testing;
|
||||
|
||||
const string FEATURES2D_DIR = "features2d";
|
||||
const string IMAGE_FILENAME = "tsukuba.png";
|
||||
@ -417,68 +418,82 @@ TEST( Features2d_DescriptorExtractor, batch )
|
||||
}
|
||||
}
|
||||
|
||||
TEST( Features2d_Feature2d, no_crash )
|
||||
class DescriptorImage : public TestWithParam<std::string>
|
||||
{
|
||||
protected:
|
||||
virtual void SetUp() {
|
||||
pattern = GetParam();
|
||||
}
|
||||
|
||||
std::string pattern;
|
||||
};
|
||||
|
||||
TEST_P(DescriptorImage, no_crash)
|
||||
{
|
||||
const String& pattern = string(cvtest::TS::ptr()->get_data_path() + "shared/*.png");
|
||||
vector<String> fnames;
|
||||
glob(pattern, fnames, false);
|
||||
glob(cvtest::TS::ptr()->get_data_path() + pattern, fnames, false);
|
||||
sort(fnames.begin(), fnames.end());
|
||||
|
||||
Ptr<AKAZE> akaze = AKAZE::create();
|
||||
Ptr<AKAZE> akaze_mldb = AKAZE::create(AKAZE::DESCRIPTOR_MLDB);
|
||||
Ptr<AKAZE> akaze_mldb_upright = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT);
|
||||
Ptr<AKAZE> akaze_mldb_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 256);
|
||||
Ptr<AKAZE> akaze_mldb_upright_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT, 256);
|
||||
Ptr<AKAZE> akaze_kaze = AKAZE::create(AKAZE::DESCRIPTOR_KAZE);
|
||||
Ptr<AKAZE> akaze_kaze_upright = AKAZE::create(AKAZE::DESCRIPTOR_KAZE_UPRIGHT);
|
||||
Ptr<ORB> orb = ORB::create();
|
||||
Ptr<KAZE> kaze = KAZE::create();
|
||||
Ptr<BRISK> brisk = BRISK::create();
|
||||
size_t i, n = fnames.size();
|
||||
size_t n = fnames.size();
|
||||
vector<KeyPoint> keypoints;
|
||||
Mat descriptors;
|
||||
orb->setMaxFeatures(5000);
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
for(size_t i = 0; i < n; i++ )
|
||||
{
|
||||
printf("%d. image: %s:\n", (int)i, fnames[i].c_str());
|
||||
if( strstr(fnames[i].c_str(), "MP.png") != 0 )
|
||||
{
|
||||
printf("\tskip\n");
|
||||
continue;
|
||||
}
|
||||
bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0;
|
||||
|
||||
Mat img = imread(fnames[i], -1);
|
||||
printf("\tAKAZE ... "); fflush(stdout);
|
||||
akaze->detectAndCompute(img, noArray(), keypoints, descriptors);
|
||||
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
|
||||
if( checkCount )
|
||||
{
|
||||
EXPECT_GT((int)keypoints.size(), 0);
|
||||
}
|
||||
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
|
||||
printf("ok\n");
|
||||
|
||||
printf("\tKAZE ... "); fflush(stdout);
|
||||
kaze->detectAndCompute(img, noArray(), keypoints, descriptors);
|
||||
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
|
||||
if( checkCount )
|
||||
{
|
||||
EXPECT_GT((int)keypoints.size(), 0);
|
||||
}
|
||||
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
|
||||
printf("ok\n");
|
||||
printf("\t%dx%d\n", img.cols, img.rows);
|
||||
|
||||
printf("\tORB ... "); fflush(stdout);
|
||||
orb->detectAndCompute(img, noArray(), keypoints, descriptors);
|
||||
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
|
||||
if( checkCount )
|
||||
{
|
||||
EXPECT_GT((int)keypoints.size(), 0);
|
||||
}
|
||||
#define TEST_DETECTOR(name, descriptor) \
|
||||
keypoints.clear(); descriptors.release(); \
|
||||
printf("\t" name "\n"); fflush(stdout); \
|
||||
descriptor->detectAndCompute(img, noArray(), keypoints, descriptors); \
|
||||
printf("\t\t\t(%d keypoints, descriptor size = %d)\n", (int)keypoints.size(), descriptors.cols); fflush(stdout); \
|
||||
if (checkCount) \
|
||||
{ \
|
||||
EXPECT_GT((int)keypoints.size(), 0); \
|
||||
} \
|
||||
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
|
||||
printf("ok\n");
|
||||
|
||||
printf("\tBRISK ... "); fflush(stdout);
|
||||
brisk->detectAndCompute(img, noArray(), keypoints, descriptors);
|
||||
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
|
||||
if( checkCount )
|
||||
{
|
||||
EXPECT_GT((int)keypoints.size(), 0);
|
||||
}
|
||||
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
|
||||
printf("ok\n");
|
||||
TEST_DETECTOR("AKAZE:MLDB", akaze_mldb);
|
||||
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT", akaze_mldb_upright);
|
||||
TEST_DETECTOR("AKAZE:MLDB_256", akaze_mldb_256);
|
||||
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT_256", akaze_mldb_upright_256);
|
||||
TEST_DETECTOR("AKAZE:KAZE", akaze_kaze);
|
||||
TEST_DETECTOR("AKAZE:KAZE_UPRIGHT", akaze_kaze_upright);
|
||||
TEST_DETECTOR("KAZE", kaze);
|
||||
TEST_DETECTOR("ORB", orb);
|
||||
TEST_DETECTOR("BRISK", brisk);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Features2d, DescriptorImage,
|
||||
testing::Values(
|
||||
"shared/lena.png",
|
||||
"shared/box*.png",
|
||||
"shared/fruits*.png",
|
||||
"shared/airplane.png",
|
||||
"shared/graffiti.png",
|
||||
"shared/1_itseez-0001*.png",
|
||||
"shared/pic*.png",
|
||||
"shared/templ.png"
|
||||
)
|
||||
);
|
||||
|
||||
@ -8,7 +8,11 @@ from pprint import PrettyPrinter as PP
|
||||
LONG_TESTS_DEBUG_VALGRIND = [
|
||||
('calib3d', 'Calib3d_InitUndistortRectifyMap.accuracy', 2017.22),
|
||||
('dnn', 'Reproducibility*', 1000), # large DNN models
|
||||
('features2d', 'Features2d_Feature2d.no_crash', 1235.68),
|
||||
('features2d', 'Features2d/DescriptorImage.no_crash/3', 1000),
|
||||
('features2d', 'Features2d/DescriptorImage.no_crash/4', 1000),
|
||||
('features2d', 'Features2d/DescriptorImage.no_crash/5', 1000),
|
||||
('features2d', 'Features2d/DescriptorImage.no_crash/6', 1000),
|
||||
('features2d', 'Features2d/DescriptorImage.no_crash/7', 1000),
|
||||
('imgcodecs', 'Imgcodecs_Png.write_big', 1000), # memory limit
|
||||
('imgcodecs', 'Imgcodecs_Tiff.decode_tile16384x16384', 1000), # memory limit
|
||||
('ml', 'ML_RTrees.regression', 1423.47),
|
||||
|
||||
Loading…
Reference in New Issue
Block a user