Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
6356403964
@ -389,7 +389,7 @@ CV_EXPORTS CV_NORETURN void error(int _code, const String& _err, const char* _fu
|
||||
// We need to use simplified definition for them.
|
||||
#define CV_Error(...) do { abort(); } while (0)
|
||||
#define CV_Error_( code, args ) do { cv::format args; abort(); } while (0)
|
||||
#define CV_Assert_1( expr ) do { if (!(expr)) abort(); } while (0)
|
||||
#define CV_Assert( expr ) do { if (!(expr)) abort(); } while (0)
|
||||
|
||||
#else // CV_STATIC_ANALYSIS
|
||||
|
||||
@ -419,7 +419,13 @@ for example:
|
||||
*/
|
||||
#define CV_Error_( code, args ) cv::error( code, cv::format args, CV_Func, __FILE__, __LINE__ )
|
||||
|
||||
#define CV_Assert_1( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ )
|
||||
/** @brief Checks a condition at runtime and throws exception if it fails
|
||||
|
||||
The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros
|
||||
raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release
|
||||
configurations while CV_DbgAssert is only retained in the Debug configuration.
|
||||
*/
|
||||
#define CV_Assert( expr ) do { if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ); } while(0)
|
||||
|
||||
#endif // CV_STATIC_ANALYSIS
|
||||
|
||||
@ -432,8 +438,8 @@ for example:
|
||||
#define CV_ErrorNoReturn_ CV_Error_
|
||||
#endif
|
||||
#endif
|
||||
//! @endcond
|
||||
|
||||
#define CV_Assert_1 CV_Assert
|
||||
#define CV_Assert_2( expr1, expr2 ) CV_Assert_1(expr1); CV_Assert_1(expr2)
|
||||
#define CV_Assert_3( expr1, expr2, expr3 ) CV_Assert_2(expr1, expr2); CV_Assert_1(expr3)
|
||||
#define CV_Assert_4( expr1, expr2, expr3, expr4 ) CV_Assert_3(expr1, expr2, expr3); CV_Assert_1(expr4)
|
||||
@ -444,21 +450,14 @@ for example:
|
||||
#define CV_Assert_9( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ) CV_Assert_8(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ); CV_Assert_1(expr9)
|
||||
#define CV_Assert_10( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9, expr10 ) CV_Assert_9(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ); CV_Assert_1(expr10)
|
||||
|
||||
#define CV_VA_NUM_ARGS_HELPER(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N
|
||||
#define CV_VA_NUM_ARGS(...) CV_VA_NUM_ARGS_HELPER(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
|
||||
#define CV_Assert_N(...) do { __CV_CAT(CV_Assert_, __CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__); } while(0)
|
||||
|
||||
/** @brief Checks a condition at runtime and throws exception if it fails
|
||||
//! @endcond
|
||||
|
||||
The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros
|
||||
raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release
|
||||
configurations while CV_DbgAssert is only retained in the Debug configuration.
|
||||
*/
|
||||
#define CV_Assert(...) do { CVAUX_CONCAT(CV_Assert_, CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__); } while(0)
|
||||
|
||||
/** replaced with CV_Assert(expr) in Debug configuration */
|
||||
#if defined _DEBUG || defined CV_STATIC_ANALYSIS
|
||||
# define CV_DbgAssert(expr) CV_Assert(expr)
|
||||
#else
|
||||
/** replaced with CV_Assert(expr) in Debug configuration */
|
||||
# define CV_DbgAssert(expr)
|
||||
#endif
|
||||
|
||||
|
||||
@ -79,6 +79,8 @@ namespace cv { namespace debug_build_guard { } using namespace debug_build_guard
|
||||
#define __CV_CAT(x, y) __CV_CAT_(x, y)
|
||||
#endif
|
||||
|
||||
#define __CV_VA_NUM_ARGS_HELPER(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N
|
||||
#define __CV_VA_NUM_ARGS(...) __CV_VA_NUM_ARGS_HELPER(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
|
||||
|
||||
// undef problematic defines sometimes defined by system headers (windows.h in particular)
|
||||
#undef small
|
||||
@ -347,7 +349,13 @@ Cv64suf;
|
||||
// We need to use simplified definition for them.
|
||||
#ifndef CV_STATIC_ANALYSIS
|
||||
# if defined(__KLOCWORK__) || defined(__clang_analyzer__) || defined(__COVERITY__)
|
||||
# define CV_STATIC_ANALYSIS
|
||||
# define CV_STATIC_ANALYSIS 1
|
||||
# endif
|
||||
#else
|
||||
# if defined(CV_STATIC_ANALYSIS) && !(__CV_CAT(1, CV_STATIC_ANALYSIS) == 1) // defined and not empty
|
||||
# if 0 == CV_STATIC_ANALYSIS
|
||||
# undef CV_STATIC_ANALYSIS
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
@ -204,6 +204,18 @@ CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
|
||||
#define CV_SIMD512_64F 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD128_FP16
|
||||
#define CV_SIMD128_FP16 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD256_FP16
|
||||
#define CV_SIMD256_FP16 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD512_FP16
|
||||
#define CV_SIMD512_FP16 0
|
||||
#endif
|
||||
|
||||
//==================================================================================================
|
||||
|
||||
#define CV_INTRIN_DEFINE_WIDE_INTRIN(typ, vtyp, short_typ, prefix, loadsfx) \
|
||||
@ -274,8 +286,8 @@ template<typename _Tp> struct V_RegTraits
|
||||
#if CV_SIMD128_64F
|
||||
CV_DEF_REG_TRAITS(v, v_float64x2, double, f64, v_float64x2, void, void, v_int64x2, v_int32x4);
|
||||
#endif
|
||||
#if CV_FP16
|
||||
CV_DEF_REG_TRAITS(v, v_float16x8, short, f16, v_float32x4, void, void, v_int16x8, v_int16x8);
|
||||
#if CV_SIMD128_FP16
|
||||
CV_DEF_REG_TRAITS(v, v_float16x8, short, f16, v_float16x8, void, void, v_int16x8, v_int16x8);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@ -290,8 +302,8 @@ template<typename _Tp> struct V_RegTraits
|
||||
CV_DEF_REG_TRAITS(v256, v_uint64x4, uint64, u64, v_uint64x4, void, void, v_int64x4, void);
|
||||
CV_DEF_REG_TRAITS(v256, v_int64x4, int64, s64, v_uint64x4, void, void, v_int64x4, void);
|
||||
CV_DEF_REG_TRAITS(v256, v_float64x4, double, f64, v_float64x4, void, void, v_int64x4, v_int32x8);
|
||||
#if CV_FP16
|
||||
CV_DEF_REG_TRAITS(v256, v_float16x16, short, f16, v_float32x8, void, void, v_int16x16, void);
|
||||
#if CV_SIMD256_FP16
|
||||
CV_DEF_REG_TRAITS(v256, v_float16x16, short, f16, v_float16x16, void, void, v_int16x16, void);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@ -309,6 +321,7 @@ using namespace CV__SIMD_NAMESPACE;
|
||||
namespace CV__SIMD_NAMESPACE {
|
||||
#define CV_SIMD 1
|
||||
#define CV_SIMD_64F CV_SIMD256_64F
|
||||
#define CV_SIMD_FP16 CV_SIMD256_FP16
|
||||
#define CV_SIMD_WIDTH 32
|
||||
typedef v_uint8x32 v_uint8;
|
||||
typedef v_int8x32 v_int8;
|
||||
@ -323,6 +336,10 @@ namespace CV__SIMD_NAMESPACE {
|
||||
typedef v_float64x4 v_float64;
|
||||
#endif
|
||||
#if CV_FP16
|
||||
#define vx_load_fp16_f32 v256_load_fp16_f32
|
||||
#define vx_store_fp16 v_store_fp16
|
||||
#endif
|
||||
#if CV_SIMD256_FP16
|
||||
typedef v_float16x16 v_float16;
|
||||
CV_INTRIN_DEFINE_WIDE_INTRIN(short, v_float16, f16, v256, load_f16)
|
||||
#endif
|
||||
@ -336,6 +353,7 @@ using namespace CV__SIMD_NAMESPACE;
|
||||
namespace CV__SIMD_NAMESPACE {
|
||||
#define CV_SIMD CV_SIMD128
|
||||
#define CV_SIMD_64F CV_SIMD128_64F
|
||||
#define CV_SIMD_FP16 CV_SIMD128_FP16
|
||||
#define CV_SIMD_WIDTH 16
|
||||
typedef v_uint8x16 v_uint8;
|
||||
typedef v_int8x16 v_int8;
|
||||
@ -350,6 +368,10 @@ namespace CV__SIMD_NAMESPACE {
|
||||
typedef v_float64x2 v_float64;
|
||||
#endif
|
||||
#if CV_FP16
|
||||
#define vx_load_fp16_f32 v128_load_fp16_f32
|
||||
#define vx_store_fp16 v_store_fp16
|
||||
#endif
|
||||
#if CV_SIMD128_FP16
|
||||
typedef v_float16x8 v_float16;
|
||||
CV_INTRIN_DEFINE_WIDE_INTRIN(short, v_float16, f16, v, load_f16)
|
||||
#endif
|
||||
@ -393,6 +415,11 @@ CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
|
||||
#define CV_SIMD_64F 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD_FP16
|
||||
#define CV_SIMD_FP16 0 //!< Defined to 1 on native support of operations with float16x8_t / float16x16_t (SIMD256) types
|
||||
#endif
|
||||
|
||||
|
||||
#ifndef CV_SIMD
|
||||
#define CV_SIMD 0
|
||||
#endif
|
||||
|
||||
@ -7,6 +7,7 @@
|
||||
|
||||
#define CV_SIMD256 1
|
||||
#define CV_SIMD256_64F 1
|
||||
#define CV_SIMD256_FP16 0 // no native operations with FP16 type. Only load/store from float32x8 are available (if CV_FP16 == 1)
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -262,26 +263,6 @@ struct v_float64x4
|
||||
double get0() const { return _mm_cvtsd_f64(_mm256_castpd256_pd128(val)); }
|
||||
};
|
||||
|
||||
struct v_float16x16
|
||||
{
|
||||
typedef short lane_type;
|
||||
enum { nlanes = 16 };
|
||||
__m256i val;
|
||||
|
||||
explicit v_float16x16(__m256i v) : val(v) {}
|
||||
v_float16x16(short v0, short v1, short v2, short v3,
|
||||
short v4, short v5, short v6, short v7,
|
||||
short v8, short v9, short v10, short v11,
|
||||
short v12, short v13, short v14, short v15)
|
||||
{
|
||||
val = _mm256_setr_epi16(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15);
|
||||
}
|
||||
v_float16x16() : val(_mm256_setzero_si256()) {}
|
||||
short get0() const { return (short)_v_cvtsi256_si32(val); }
|
||||
};
|
||||
inline v_float16x16 v256_setzero_f16() { return v_float16x16(_mm256_setzero_si256()); }
|
||||
inline v_float16x16 v256_setall_f16(short val) { return v_float16x16(_mm256_set1_epi16(val)); }
|
||||
|
||||
//////////////// Load and store operations ///////////////
|
||||
|
||||
#define OPENCV_HAL_IMPL_AVX_LOADSTORE(_Tpvec, _Tp) \
|
||||
@ -424,20 +405,18 @@ inline v_float64x4 v_reinterpret_as_f64(const v_float64x4& a)
|
||||
inline v_float64x4 v_reinterpret_as_f64(const v_float32x8& a)
|
||||
{ return v_float64x4(_mm256_castps_pd(a.val)); }
|
||||
|
||||
inline v_float16x16 v256_load_f16(const short* ptr)
|
||||
{ return v_float16x16(_mm256_loadu_si256((const __m256i*)ptr)); }
|
||||
inline v_float16x16 v256_load_f16_aligned(const short* ptr)
|
||||
{ return v_float16x16(_mm256_load_si256((const __m256i*)ptr)); }
|
||||
#if CV_FP16
|
||||
inline v_float32x8 v256_load_fp16_f32(const short* ptr)
|
||||
{
|
||||
return v_float32x8(_mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)ptr)));
|
||||
}
|
||||
|
||||
inline v_float16x16 v256_load_f16_low(const short* ptr)
|
||||
{ return v_float16x16(v256_load_low(ptr).val); }
|
||||
inline v_float16x16 v256_load_f16_halves(const short* ptr0, const short* ptr1)
|
||||
{ return v_float16x16(v256_load_halves(ptr0, ptr1).val); }
|
||||
|
||||
inline void v_store(short* ptr, const v_float16x16& a)
|
||||
{ _mm256_storeu_si256((__m256i*)ptr, a.val); }
|
||||
inline void v_store_aligned(short* ptr, const v_float16x16& a)
|
||||
{ _mm256_store_si256((__m256i*)ptr, a.val); }
|
||||
inline void v_store_fp16(short* ptr, const v_float32x8& a)
|
||||
{
|
||||
__m128i fp16_value = _mm256_cvtps_ph(a.val, 0);
|
||||
_mm_store_si128((__m128i*)ptr, fp16_value);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Recombine */
|
||||
/*#define OPENCV_HAL_IMPL_AVX_COMBINE(_Tpvec, perm) \
|
||||
@ -1262,20 +1241,6 @@ inline v_float64x4 v_cvt_f64(const v_float32x8& a)
|
||||
inline v_float64x4 v_cvt_f64_high(const v_float32x8& a)
|
||||
{ return v_float64x4(_mm256_cvtps_pd(_v256_extract_high(a.val))); }
|
||||
|
||||
#if CV_FP16
|
||||
inline v_float32x8 v_cvt_f32(const v_float16x16& a)
|
||||
{ return v_float32x8(_mm256_cvtph_ps(_v256_extract_low(a.val))); }
|
||||
|
||||
inline v_float32x8 v_cvt_f32_high(const v_float16x16& a)
|
||||
{ return v_float32x8(_mm256_cvtph_ps(_v256_extract_high(a.val))); }
|
||||
|
||||
inline v_float16x16 v_cvt_f16(const v_float32x8& a, const v_float32x8& b)
|
||||
{
|
||||
__m128i ah = _mm256_cvtps_ph(a.val, 0), bh = _mm256_cvtps_ph(b.val, 0);
|
||||
return v_float16x16(_mm256_inserti128_si256(_mm256_castsi128_si256(ah), bh, 1));
|
||||
}
|
||||
#endif
|
||||
|
||||
////////////// Lookup table access ////////////////////
|
||||
|
||||
inline v_int32x8 v_lut(const int* tab, const v_int32x8& idxvec)
|
||||
|
||||
@ -62,6 +62,15 @@ CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
|
||||
#define CV_SIMD128_64F 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD128_FP16
|
||||
# if CV_FP16 && (defined(__GNUC__) && __GNUC__ >= 5) // #12027: float16x8_t is missing in GCC 4.8.2
|
||||
# define CV_SIMD128_FP16 1
|
||||
# endif
|
||||
#endif
|
||||
#ifndef CV_SIMD128_FP16
|
||||
# define CV_SIMD128_FP16 0
|
||||
#endif
|
||||
|
||||
#if CV_SIMD128_64F
|
||||
#define OPENCV_HAL_IMPL_NEON_REINTERPRET(_Tpv, suffix) \
|
||||
template <typename T> static inline \
|
||||
@ -280,28 +289,9 @@ struct v_float64x2
|
||||
|
||||
#if CV_FP16
|
||||
// Workaround for old compilers
|
||||
static inline int16x8_t vreinterpretq_s16_f16(float16x8_t a) { return (int16x8_t)a; }
|
||||
static inline float16x8_t vreinterpretq_f16_s16(int16x8_t a) { return (float16x8_t)a; }
|
||||
static inline int16x4_t vreinterpret_s16_f16(float16x4_t a) { return (int16x4_t)a; }
|
||||
static inline float16x4_t vreinterpret_f16_s16(int16x4_t a) { return (float16x4_t)a; }
|
||||
|
||||
static inline float16x8_t cv_vld1q_f16(const void* ptr)
|
||||
{
|
||||
#ifndef vld1q_f16 // APPLE compiler defines vld1_f16 as macro
|
||||
return vreinterpretq_f16_s16(vld1q_s16((const short*)ptr));
|
||||
#else
|
||||
return vld1q_f16((const __fp16*)ptr);
|
||||
#endif
|
||||
}
|
||||
static inline void cv_vst1q_f16(void* ptr, float16x8_t a)
|
||||
{
|
||||
#ifndef vst1q_f16 // APPLE compiler defines vst1_f16 as macro
|
||||
vst1q_s16((short*)ptr, vreinterpretq_s16_f16(a));
|
||||
#else
|
||||
vst1q_f16((__fp16*)ptr, a);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline float16x4_t cv_vld1_f16(const void* ptr)
|
||||
{
|
||||
#ifndef vld1_f16 // APPLE compiler defines vld1_f16 as macro
|
||||
@ -323,6 +313,45 @@ static inline void cv_vst1_f16(void* ptr, float16x4_t a)
|
||||
#define vdup_n_f16(v) (float16x4_t){v, v, v, v}
|
||||
#endif
|
||||
|
||||
#endif // CV_FP16
|
||||
|
||||
#if CV_FP16
|
||||
inline v_float32x4 v128_load_fp16_f32(const short* ptr)
|
||||
{
|
||||
float16x4_t a = cv_vld1_f16((const __fp16*)ptr);
|
||||
return v_float32x4(vcvt_f32_f16(a));
|
||||
}
|
||||
|
||||
inline void v_store_fp16(short* ptr, const v_float32x4& a)
|
||||
{
|
||||
float16x4_t fp16 = vcvt_f16_f32(a.val);
|
||||
cv_vst1_f16((short*)ptr, fp16);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if CV_SIMD128_FP16
|
||||
// Workaround for old compilers
|
||||
static inline int16x8_t vreinterpretq_s16_f16(float16x8_t a) { return (int16x8_t)a; }
|
||||
static inline float16x8_t vreinterpretq_f16_s16(int16x8_t a) { return (float16x8_t)a; }
|
||||
|
||||
static inline float16x8_t cv_vld1q_f16(const void* ptr)
|
||||
{
|
||||
#ifndef vld1q_f16 // APPLE compiler defines vld1_f16 as macro
|
||||
return vreinterpretq_f16_s16(vld1q_s16((const short*)ptr));
|
||||
#else
|
||||
return vld1q_f16((const __fp16*)ptr);
|
||||
#endif
|
||||
}
|
||||
static inline void cv_vst1q_f16(void* ptr, float16x8_t a)
|
||||
{
|
||||
#ifndef vst1q_f16 // APPLE compiler defines vst1_f16 as macro
|
||||
vst1q_s16((short*)ptr, vreinterpretq_s16_f16(a));
|
||||
#else
|
||||
vst1q_f16((__fp16*)ptr, a);
|
||||
#endif
|
||||
}
|
||||
|
||||
struct v_float16x8
|
||||
{
|
||||
typedef short lane_type;
|
||||
@ -344,7 +373,8 @@ struct v_float16x8
|
||||
|
||||
inline v_float16x8 v_setzero_f16() { return v_float16x8(vreinterpretq_f16_s16(vdupq_n_s16((short)0))); }
|
||||
inline v_float16x8 v_setall_f16(short v) { return v_float16x8(vreinterpretq_f16_s16(vdupq_n_s16(v))); }
|
||||
#endif
|
||||
|
||||
#endif // CV_SIMD128_FP16
|
||||
|
||||
#define OPENCV_HAL_IMPL_NEON_INIT(_Tpv, _Tp, suffix) \
|
||||
inline v_##_Tpv v_setzero_##suffix() { return v_##_Tpv(vdupq_n_##suffix((_Tp)0)); } \
|
||||
@ -889,7 +919,7 @@ OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float32x4, float, f32)
|
||||
OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float64x2, double, f64)
|
||||
#endif
|
||||
|
||||
#if CV_FP16
|
||||
#if CV_SIMD128_FP16
|
||||
// Workaround for old comiplers
|
||||
inline v_float16x8 v_load_f16(const short* ptr)
|
||||
{ return v_float16x8(cv_vld1q_f16(ptr)); }
|
||||
@ -1462,7 +1492,7 @@ inline v_float64x2 v_cvt_f64_high(const v_float32x4& a)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if CV_FP16
|
||||
#if CV_SIMD128_FP16
|
||||
inline v_float32x4 v_cvt_f32(const v_float16x8& a)
|
||||
{
|
||||
return v_float32x4(vcvt_f32_f16(vget_low_f16(a.val)));
|
||||
|
||||
@ -50,6 +50,7 @@
|
||||
|
||||
#define CV_SIMD128 1
|
||||
#define CV_SIMD128_64F 1
|
||||
#define CV_SIMD128_FP16 0 // no native operations with FP16 type.
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -272,28 +273,6 @@ struct v_float64x2
|
||||
__m128d val;
|
||||
};
|
||||
|
||||
struct v_float16x8
|
||||
{
|
||||
typedef short lane_type;
|
||||
typedef __m128i vector_type;
|
||||
enum { nlanes = 8 };
|
||||
|
||||
v_float16x8() : val(_mm_setzero_si128()) {}
|
||||
explicit v_float16x8(__m128i v) : val(v) {}
|
||||
v_float16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7)
|
||||
{
|
||||
val = _mm_setr_epi16(v0, v1, v2, v3, v4, v5, v6, v7);
|
||||
}
|
||||
short get0() const
|
||||
{
|
||||
return (short)_mm_cvtsi128_si32(val);
|
||||
}
|
||||
|
||||
__m128i val;
|
||||
};
|
||||
inline v_float16x8 v_setzero_f16() { return v_float16x8(_mm_setzero_si128()); }
|
||||
inline v_float16x8 v_setall_f16(short val) { return v_float16x8(_mm_set1_epi16(val)); }
|
||||
|
||||
namespace hal_sse_internal
|
||||
{
|
||||
template <typename to_sse_type, typename from_sse_type>
|
||||
@ -1330,21 +1309,6 @@ inline void v_store_high(_Tp* ptr, const _Tpvec& a) \
|
||||
OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(v_float32x4, float, ps)
|
||||
OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(v_float64x2, double, pd)
|
||||
|
||||
inline v_float16x8 v_load_f16(const short* ptr)
|
||||
{ return v_float16x8(_mm_loadu_si128((const __m128i*)ptr)); }
|
||||
inline v_float16x8 v_load_f16_aligned(const short* ptr)
|
||||
{ return v_float16x8(_mm_load_si128((const __m128i*)ptr)); }
|
||||
|
||||
inline v_float16x8 v_load_f16_low(const short* ptr)
|
||||
{ return v_float16x8(v_load_low(ptr).val); }
|
||||
inline v_float16x8 v_load_f16_halves(const short* ptr0, const short* ptr1)
|
||||
{ return v_float16x8(v_load_halves(ptr0, ptr1).val); }
|
||||
|
||||
inline void v_store(short* ptr, const v_float16x8& a)
|
||||
{ _mm_storeu_si128((__m128i*)ptr, a.val); }
|
||||
inline void v_store_aligned(short* ptr, const v_float16x8& a)
|
||||
{ _mm_store_si128((__m128i*)ptr, a.val); }
|
||||
|
||||
#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(_Tpvec, scalartype, func, suffix, sbit) \
|
||||
inline scalartype v_reduce_##func(const v_##_Tpvec& a) \
|
||||
{ \
|
||||
@ -2622,19 +2586,15 @@ inline v_float64x2 v_cvt_f64_high(const v_float32x4& a)
|
||||
}
|
||||
|
||||
#if CV_FP16
|
||||
inline v_float32x4 v_cvt_f32(const v_float16x8& a)
|
||||
inline v_float32x4 v128_load_fp16_f32(const short* ptr)
|
||||
{
|
||||
return v_float32x4(_mm_cvtph_ps(a.val));
|
||||
return v_float32x4(_mm_cvtph_ps(_mm_loadu_si128((const __m128i*)ptr)));
|
||||
}
|
||||
|
||||
inline v_float32x4 v_cvt_f32_high(const v_float16x8& a)
|
||||
inline void v_store_fp16(short* ptr, const v_float32x4& a)
|
||||
{
|
||||
return v_float32x4(_mm_cvtph_ps(_mm_unpackhi_epi64(a.val, a.val)));
|
||||
}
|
||||
|
||||
inline v_float16x8 v_cvt_f16(const v_float32x4& a, const v_float32x4& b)
|
||||
{
|
||||
return v_float16x8(_mm_unpacklo_epi64(_mm_cvtps_ph(a.val, 0), _mm_cvtps_ph(b.val, 0)));
|
||||
__m128i fp16_value = _mm_cvtps_ph(a.val, 0);
|
||||
_mm_storel_epi64((__m128i*)ptr, fp16_value);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
@ -796,7 +796,7 @@ static bool ocl_gemm( InputArray matA, InputArray matB, double alpha,
|
||||
int depth = matA.depth(), cn = matA.channels();
|
||||
int type = CV_MAKETYPE(depth, cn);
|
||||
|
||||
CV_Assert( type == matB.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) );
|
||||
CV_Assert_N( type == matB.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) );
|
||||
|
||||
const ocl::Device & dev = ocl::Device::getDefault();
|
||||
bool doubleSupport = dev.doubleFPConfig() > 0;
|
||||
@ -1555,7 +1555,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha,
|
||||
Size a_size = A.size(), d_size;
|
||||
int len = 0, type = A.type();
|
||||
|
||||
CV_Assert( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) );
|
||||
CV_Assert_N( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) );
|
||||
|
||||
switch( flags & (GEMM_1_T|GEMM_2_T) )
|
||||
{
|
||||
@ -1583,7 +1583,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha,
|
||||
|
||||
if( !C.empty() )
|
||||
{
|
||||
CV_Assert( C.type() == type,
|
||||
CV_Assert_N( C.type() == type,
|
||||
(((flags&GEMM_3_T) == 0 && C.rows == d_size.height && C.cols == d_size.width) ||
|
||||
((flags&GEMM_3_T) != 0 && C.rows == d_size.width && C.cols == d_size.height)));
|
||||
}
|
||||
@ -2457,7 +2457,7 @@ void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean,
|
||||
{
|
||||
CV_INSTRUMENT_REGION()
|
||||
|
||||
CV_Assert( data, nsamples > 0 );
|
||||
CV_Assert_N( data, nsamples > 0 );
|
||||
Size size = data[0].size();
|
||||
int sz = size.width * size.height, esz = (int)data[0].elemSize();
|
||||
int type = data[0].type();
|
||||
@ -2480,7 +2480,7 @@ void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean,
|
||||
|
||||
for( int i = 0; i < nsamples; i++ )
|
||||
{
|
||||
CV_Assert( data[i].size() == size, data[i].type() == type );
|
||||
CV_Assert_N( data[i].size() == size, data[i].type() == type );
|
||||
if( data[i].isContinuous() )
|
||||
memcpy( _data.ptr(i), data[i].ptr(), sz*esz );
|
||||
else
|
||||
@ -2516,7 +2516,7 @@ void cv::calcCovarMatrix( InputArray _src, OutputArray _covar, InputOutputArray
|
||||
int i = 0;
|
||||
for(std::vector<cv::Mat>::iterator each = src.begin(); each != src.end(); ++each, ++i )
|
||||
{
|
||||
CV_Assert( (*each).size() == size, (*each).type() == type );
|
||||
CV_Assert_N( (*each).size() == size, (*each).type() == type );
|
||||
Mat dataRow(size.height, size.width, type, _data.ptr(i));
|
||||
(*each).copyTo(dataRow);
|
||||
}
|
||||
@ -2595,7 +2595,7 @@ double cv::Mahalanobis( InputArray _v1, InputArray _v2, InputArray _icovar )
|
||||
AutoBuffer<double> buf(len);
|
||||
double result = 0;
|
||||
|
||||
CV_Assert( type == v2.type(), type == icovar.type(),
|
||||
CV_Assert_N( type == v2.type(), type == icovar.type(),
|
||||
sz == v2.size(), len == icovar.rows && len == icovar.cols );
|
||||
|
||||
sz.width *= v1.channels();
|
||||
@ -2888,7 +2888,7 @@ void cv::mulTransposed( InputArray _src, OutputArray _dst, bool ata,
|
||||
|
||||
if( !delta.empty() )
|
||||
{
|
||||
CV_Assert( delta.channels() == 1,
|
||||
CV_Assert_N( delta.channels() == 1,
|
||||
(delta.rows == src.rows || delta.rows == 1),
|
||||
(delta.cols == src.cols || delta.cols == 1));
|
||||
if( delta.type() != dtype )
|
||||
@ -3291,7 +3291,7 @@ double Mat::dot(InputArray _mat) const
|
||||
Mat mat = _mat.getMat();
|
||||
int cn = channels();
|
||||
DotProdFunc func = getDotProdFunc(depth());
|
||||
CV_Assert( mat.type() == type(), mat.size == size, func != 0 );
|
||||
CV_Assert_N( mat.type() == type(), mat.size == size, func != 0 );
|
||||
|
||||
if( isContinuous() && mat.isContinuous() )
|
||||
{
|
||||
@ -3327,7 +3327,7 @@ CV_IMPL void cvGEMM( const CvArr* Aarr, const CvArr* Barr, double alpha,
|
||||
if( Carr )
|
||||
C = cv::cvarrToMat(Carr);
|
||||
|
||||
CV_Assert( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)),
|
||||
CV_Assert_N( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)),
|
||||
(D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)),
|
||||
D.type() == A.type() );
|
||||
|
||||
@ -3350,7 +3350,7 @@ cvTransform( const CvArr* srcarr, CvArr* dstarr,
|
||||
m = _m;
|
||||
}
|
||||
|
||||
CV_Assert( dst.depth() == src.depth(), dst.channels() == m.rows );
|
||||
CV_Assert_N( dst.depth() == src.depth(), dst.channels() == m.rows );
|
||||
cv::transform( src, dst, m );
|
||||
}
|
||||
|
||||
@ -3360,7 +3360,7 @@ cvPerspectiveTransform( const CvArr* srcarr, CvArr* dstarr, const CvMat* mat )
|
||||
{
|
||||
cv::Mat m = cv::cvarrToMat(mat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
||||
|
||||
CV_Assert( dst.type() == src.type(), dst.channels() == m.rows-1 );
|
||||
CV_Assert_N( dst.type() == src.type(), dst.channels() == m.rows-1 );
|
||||
cv::perspectiveTransform( src, dst, m );
|
||||
}
|
||||
|
||||
@ -3370,7 +3370,7 @@ CV_IMPL void cvScaleAdd( const CvArr* srcarr1, CvScalar scale,
|
||||
{
|
||||
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
|
||||
|
||||
CV_Assert( src1.size == dst.size, src1.type() == dst.type() );
|
||||
CV_Assert_N( src1.size == dst.size, src1.type() == dst.type() );
|
||||
cv::scaleAdd( src1, scale.val[0], cv::cvarrToMat(srcarr2), dst );
|
||||
}
|
||||
|
||||
@ -3380,7 +3380,7 @@ cvCalcCovarMatrix( const CvArr** vecarr, int count,
|
||||
CvArr* covarr, CvArr* avgarr, int flags )
|
||||
{
|
||||
cv::Mat cov0 = cv::cvarrToMat(covarr), cov = cov0, mean0, mean;
|
||||
CV_Assert( vecarr != 0, count >= 1 );
|
||||
CV_Assert_N( vecarr != 0, count >= 1 );
|
||||
|
||||
if( avgarr )
|
||||
mean = mean0 = cv::cvarrToMat(avgarr);
|
||||
@ -3460,7 +3460,7 @@ cvCalcPCA( const CvArr* data_arr, CvArr* avg_arr, CvArr* eigenvals, CvArr* eigen
|
||||
int ecount0 = evals0.cols + evals0.rows - 1;
|
||||
int ecount = evals.cols + evals.rows - 1;
|
||||
|
||||
CV_Assert( (evals0.cols == 1 || evals0.rows == 1),
|
||||
CV_Assert_N( (evals0.cols == 1 || evals0.rows == 1),
|
||||
ecount0 <= ecount,
|
||||
evects0.cols == evects.cols,
|
||||
evects0.rows == ecount0 );
|
||||
@ -3491,12 +3491,12 @@ cvProjectPCA( const CvArr* data_arr, const CvArr* avg_arr,
|
||||
int n;
|
||||
if( mean.rows == 1 )
|
||||
{
|
||||
CV_Assert(dst.cols <= evects.rows, dst.rows == data.rows);
|
||||
CV_Assert_N(dst.cols <= evects.rows, dst.rows == data.rows);
|
||||
n = dst.cols;
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(dst.rows <= evects.rows, dst.cols == data.cols);
|
||||
CV_Assert_N(dst.rows <= evects.rows, dst.cols == data.cols);
|
||||
n = dst.rows;
|
||||
}
|
||||
pca.eigenvectors = evects.rowRange(0, n);
|
||||
@ -3522,12 +3522,12 @@ cvBackProjectPCA( const CvArr* proj_arr, const CvArr* avg_arr,
|
||||
int n;
|
||||
if( mean.rows == 1 )
|
||||
{
|
||||
CV_Assert(data.cols <= evects.rows, dst.rows == data.rows);
|
||||
CV_Assert_N(data.cols <= evects.rows, dst.rows == data.rows);
|
||||
n = data.cols;
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(data.rows <= evects.rows, dst.cols == data.cols);
|
||||
CV_Assert_N(data.rows <= evects.rows, dst.cols == data.cols);
|
||||
n = data.rows;
|
||||
}
|
||||
pca.eigenvectors = evects.rowRange(0, n);
|
||||
|
||||
@ -1123,9 +1123,37 @@ template<typename R> struct TheTest
|
||||
return *this;
|
||||
}
|
||||
|
||||
#if CV_FP16
|
||||
TheTest & test_loadstore_fp16_f32()
|
||||
{
|
||||
printf("test_loadstore_fp16_f32 ...\n");
|
||||
AlignedData<v_uint16> data; data.a.clear();
|
||||
data.a.d[0] = 0x3c00; // 1.0
|
||||
data.a.d[R::nlanes - 1] = (unsigned short)0xc000; // -2.0
|
||||
AlignedData<v_float32> data_f32; data_f32.a.clear();
|
||||
AlignedData<v_uint16> out;
|
||||
|
||||
R r1 = vx_load_fp16_f32((short*)data.a.d);
|
||||
R r2(r1);
|
||||
EXPECT_EQ(1.0f, r1.get0());
|
||||
vx_store(data_f32.a.d, r2);
|
||||
EXPECT_EQ(-2.0f, data_f32.a.d[R::nlanes - 1]);
|
||||
|
||||
out.a.clear();
|
||||
vx_store_fp16((short*)out.a.d, r2);
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
EXPECT_EQ(data.a[i], out.a[i]) << "i=" << i;
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if CV_SIMD_FP16
|
||||
TheTest & test_loadstore_fp16()
|
||||
{
|
||||
#if CV_FP16 && CV_SIMD
|
||||
printf("test_loadstore_fp16 ...\n");
|
||||
AlignedData<R> data;
|
||||
AlignedData<R> out;
|
||||
|
||||
@ -1149,12 +1177,10 @@ template<typename R> struct TheTest
|
||||
EXPECT_EQ(data.a, out.a);
|
||||
|
||||
return *this;
|
||||
#endif
|
||||
}
|
||||
|
||||
TheTest & test_float_cvt_fp16()
|
||||
{
|
||||
#if CV_FP16 && CV_SIMD
|
||||
printf("test_float_cvt_fp16 ...\n");
|
||||
AlignedData<v_float32> data;
|
||||
|
||||
// check conversion
|
||||
@ -1165,9 +1191,8 @@ template<typename R> struct TheTest
|
||||
EXPECT_EQ(r3.get0(), r1.get0());
|
||||
|
||||
return *this;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
@ -1448,11 +1473,14 @@ void test_hal_intrin_float64()
|
||||
void test_hal_intrin_float16()
|
||||
{
|
||||
DUMP_ENTRY(v_float16);
|
||||
#if CV_SIMD_WIDTH > 16
|
||||
#if CV_FP16
|
||||
TheTest<v_float32>().test_loadstore_fp16_f32();
|
||||
#endif
|
||||
#if CV_SIMD_FP16
|
||||
TheTest<v_float16>()
|
||||
.test_loadstore_fp16()
|
||||
.test_float_cvt_fp16()
|
||||
;
|
||||
;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -209,7 +209,7 @@ inline Range clamp(const Range& r, int axisSize)
|
||||
{
|
||||
Range clamped(std::max(r.start, 0),
|
||||
r.end > 0 ? std::min(r.end, axisSize) : axisSize + r.end + 1);
|
||||
CV_Assert(clamped.start < clamped.end, clamped.end <= axisSize);
|
||||
CV_Assert_N(clamped.start < clamped.end, clamped.end <= axisSize);
|
||||
return clamped;
|
||||
}
|
||||
|
||||
|
||||
@ -359,7 +359,7 @@ public:
|
||||
{
|
||||
if (!layerParams.get<bool>("use_global_stats", true))
|
||||
{
|
||||
CV_Assert(layer.bottom_size() == 1, layer.top_size() == 1);
|
||||
CV_Assert_N(layer.bottom_size() == 1, layer.top_size() == 1);
|
||||
|
||||
LayerParams mvnParams;
|
||||
mvnParams.set("eps", layerParams.get<float>("eps", 1e-5));
|
||||
|
||||
@ -134,7 +134,7 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef
|
||||
if (ddepth == CV_8U)
|
||||
{
|
||||
CV_CheckEQ(scalefactor, 1.0, "Scaling is not supported for CV_8U blob depth");
|
||||
CV_Assert(mean_ == Scalar(), "Mean subtraction is not supported for CV_8U blob depth");
|
||||
CV_Assert(mean_ == Scalar() && "Mean subtraction is not supported for CV_8U blob depth");
|
||||
}
|
||||
|
||||
std::vector<Mat> images;
|
||||
@ -451,8 +451,8 @@ struct DataLayer : public Layer
|
||||
{
|
||||
double scale = scaleFactors[i];
|
||||
Scalar& mean = means[i];
|
||||
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4,
|
||||
outputs[i].type() == CV_32F);
|
||||
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
|
||||
CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, "");
|
||||
|
||||
bool singleMean = true;
|
||||
for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
|
||||
@ -569,7 +569,7 @@ struct DataLayer : public Layer
|
||||
|
||||
void finalize(const std::vector<Mat*>&, std::vector<Mat>& outputs) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(outputs.size() == scaleFactors.size(), outputs.size() == means.size(),
|
||||
CV_Assert_N(outputs.size() == scaleFactors.size(), outputs.size() == means.size(),
|
||||
inputsData.size() == outputs.size());
|
||||
skip = true;
|
||||
for (int i = 0; skip && i < inputsData.size(); ++i)
|
||||
@ -588,7 +588,8 @@ struct DataLayer : public Layer
|
||||
lp.precision = InferenceEngine::Precision::FP32;
|
||||
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp));
|
||||
|
||||
CV_Assert(inputsData.size() == 1, inputsData[0].dims == 4);
|
||||
CV_CheckEQ(inputsData.size(), (size_t)1, "");
|
||||
CV_CheckEQ(inputsData[0].dims, 4, "");
|
||||
const size_t numChannels = inputsData[0].size[1];
|
||||
CV_Assert(numChannels <= 4);
|
||||
|
||||
@ -1237,7 +1238,7 @@ struct Net::Impl
|
||||
void initHalideBackend()
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_Assert(preferableBackend == DNN_BACKEND_HALIDE, haveHalide());
|
||||
CV_Assert_N(preferableBackend == DNN_BACKEND_HALIDE, haveHalide());
|
||||
|
||||
// Iterator to current layer.
|
||||
MapIdToLayerData::iterator it = layers.begin();
|
||||
@ -1302,7 +1303,7 @@ struct Net::Impl
|
||||
if (!node.empty())
|
||||
{
|
||||
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
|
||||
CV_Assert(!ieNode.empty(), !ieNode->net.empty());
|
||||
CV_Assert(!ieNode.empty()); CV_Assert(!ieNode->net.empty());
|
||||
layerNet = ieNode->net;
|
||||
}
|
||||
}
|
||||
@ -1316,7 +1317,7 @@ struct Net::Impl
|
||||
if (!inpNode.empty())
|
||||
{
|
||||
Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>();
|
||||
CV_Assert(!ieInpNode.empty(), !ieInpNode->net.empty());
|
||||
CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty());
|
||||
if (layerNet != ieInpNode->net)
|
||||
{
|
||||
// layerNet is empty or nodes are from different graphs.
|
||||
@ -1330,7 +1331,7 @@ struct Net::Impl
|
||||
void initInfEngineBackend()
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_Assert(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE, haveInfEngine());
|
||||
CV_Assert_N(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE, haveInfEngine());
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
MapIdToLayerData::iterator it;
|
||||
Ptr<InfEngineBackendNet> net;
|
||||
@ -1425,7 +1426,7 @@ struct Net::Impl
|
||||
if (!inpNode.empty())
|
||||
{
|
||||
Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>();
|
||||
CV_Assert(!ieInpNode.empty(), !ieInpNode->net.empty());
|
||||
CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty());
|
||||
if (ieInpNode->net != net)
|
||||
{
|
||||
net = Ptr<InfEngineBackendNet>();
|
||||
@ -1827,7 +1828,7 @@ struct Net::Impl
|
||||
// To prevent memory collisions (i.e. when input of
|
||||
// [conv] and output of [eltwise] is the same blob)
|
||||
// we allocate a new blob.
|
||||
CV_Assert(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1);
|
||||
CV_Assert_N(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1);
|
||||
ld.outputBlobs[0] = ld.outputBlobs[0].clone();
|
||||
ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]);
|
||||
|
||||
@ -1984,7 +1985,7 @@ struct Net::Impl
|
||||
}
|
||||
// Layers that refer old input Mat will refer to the
|
||||
// new data but the same Mat object.
|
||||
CV_Assert(curr_output.data == output_slice.data, oldPtr == &curr_output);
|
||||
CV_Assert_N(curr_output.data == output_slice.data, oldPtr == &curr_output);
|
||||
}
|
||||
ld.skip = true;
|
||||
printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str()));
|
||||
|
||||
@ -48,7 +48,7 @@ public:
|
||||
|
||||
float varMeanScale = 1.f;
|
||||
if (!hasWeights && !hasBias && blobs.size() > 2 && useGlobalStats) {
|
||||
CV_Assert(blobs.size() == 3, blobs[2].type() == CV_32F);
|
||||
CV_Assert(blobs.size() == 3); CV_CheckTypeEQ(blobs[2].type(), CV_32FC1, "");
|
||||
varMeanScale = blobs[2].at<float>(0);
|
||||
if (varMeanScale != 0)
|
||||
varMeanScale = 1/varMeanScale;
|
||||
|
||||
@ -349,8 +349,8 @@ public:
|
||||
// (conv(I) + b1 ) * w + b2
|
||||
// means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2]
|
||||
const int outCn = weightsMat.size[0];
|
||||
CV_Assert(!weightsMat.empty(), biasvec.size() == outCn + 2,
|
||||
w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
|
||||
CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2,
|
||||
w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
|
||||
|
||||
if (!w.empty())
|
||||
{
|
||||
@ -512,13 +512,14 @@ public:
|
||||
Size kernel, Size pad, Size stride, Size dilation,
|
||||
const ActivationLayer* activ, int ngroups, int nstripes )
|
||||
{
|
||||
CV_Assert( input.dims == 4 && output.dims == 4,
|
||||
CV_Assert_N(
|
||||
input.dims == 4 && output.dims == 4,
|
||||
input.size[0] == output.size[0],
|
||||
weights.rows == output.size[1],
|
||||
weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height,
|
||||
input.type() == output.type(),
|
||||
input.type() == weights.type(),
|
||||
input.type() == CV_32F,
|
||||
input.type() == CV_32FC1,
|
||||
input.isContinuous(),
|
||||
output.isContinuous(),
|
||||
biasvec.size() == (size_t)output.size[1]+2);
|
||||
@ -1009,8 +1010,8 @@ public:
|
||||
name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3],
|
||||
kernel.width, kernel.height, pad.width, pad.height,
|
||||
stride.width, stride.height, dilation.width, dilation.height);*/
|
||||
CV_Assert(inputs.size() == (size_t)1, inputs[0]->size[1] % blobs[0].size[1] == 0,
|
||||
outputs.size() == 1, inputs[0]->data != outputs[0].data);
|
||||
CV_Assert_N(inputs.size() == (size_t)1, inputs[0]->size[1] % blobs[0].size[1] == 0,
|
||||
outputs.size() == 1, inputs[0]->data != outputs[0].data);
|
||||
|
||||
int ngroups = inputs[0]->size[1]/blobs[0].size[1];
|
||||
CV_Assert(outputs[0].size[1] % ngroups == 0);
|
||||
|
||||
@ -14,7 +14,7 @@ class CropAndResizeLayerImpl CV_FINAL : public CropAndResizeLayer
|
||||
public:
|
||||
CropAndResizeLayerImpl(const LayerParams& params)
|
||||
{
|
||||
CV_Assert(params.has("width"), params.has("height"));
|
||||
CV_Assert_N(params.has("width"), params.has("height"));
|
||||
outWidth = params.get<float>("width");
|
||||
outHeight = params.get<float>("height");
|
||||
}
|
||||
@ -24,7 +24,7 @@ public:
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() == 2, inputs[0].size() == 4);
|
||||
CV_Assert_N(inputs.size() == 2, inputs[0].size() == 4);
|
||||
if (inputs[0][0] != 1)
|
||||
CV_Error(Error::StsNotImplemented, "");
|
||||
outputs.resize(1, MatShape(4));
|
||||
@ -56,7 +56,7 @@ public:
|
||||
const int inpWidth = inp.size[3];
|
||||
const int inpSpatialSize = inpHeight * inpWidth;
|
||||
const int outSpatialSize = outHeight * outWidth;
|
||||
CV_Assert(inp.isContinuous(), out.isContinuous());
|
||||
CV_Assert_N(inp.isContinuous(), out.isContinuous());
|
||||
|
||||
for (int b = 0; b < boxes.rows; ++b)
|
||||
{
|
||||
|
||||
@ -139,7 +139,7 @@ public:
|
||||
const std::vector<float>& coeffs, EltwiseOp op,
|
||||
const ActivationLayer* activ, int nstripes)
|
||||
{
|
||||
CV_Assert(1 < dst.dims && dst.dims <= 4, dst.type() == CV_32F, dst.isContinuous());
|
||||
CV_Check(dst.dims, 1 < dst.dims && dst.dims <= 4, ""); CV_CheckTypeEQ(dst.type(), CV_32FC1, ""); CV_Assert(dst.isContinuous());
|
||||
CV_Assert(coeffs.empty() || coeffs.size() == (size_t)nsrcs);
|
||||
|
||||
for( int i = 0; i > nsrcs; i++ )
|
||||
|
||||
@ -276,7 +276,7 @@ public:
|
||||
{
|
||||
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
|
||||
InferenceEngine::Layout::C,
|
||||
{numChannels});
|
||||
{(size_t)numChannels});
|
||||
weights->allocate();
|
||||
std::vector<float> ones(numChannels, 1);
|
||||
weights->set(ones);
|
||||
@ -286,7 +286,7 @@ public:
|
||||
else
|
||||
{
|
||||
CV_Assert(numChannels == blobs[0].total());
|
||||
ieLayer->blobs["weights"] = wrapToInfEngineBlob(blobs[0], {numChannels}, InferenceEngine::Layout::C);
|
||||
ieLayer->blobs["weights"] = wrapToInfEngineBlob(blobs[0], {(size_t)numChannels}, InferenceEngine::Layout::C);
|
||||
ieLayer->params["channel_shared"] = blobs[0].total() == 1 ? "1" : "0";
|
||||
}
|
||||
ieLayer->params["eps"] = format("%f", epsilon);
|
||||
|
||||
@ -38,7 +38,7 @@ public:
|
||||
{
|
||||
paddings[i].first = paddingsParam.get<int>(i * 2); // Pad before.
|
||||
paddings[i].second = paddingsParam.get<int>(i * 2 + 1); // Pad after.
|
||||
CV_Assert(paddings[i].first >= 0, paddings[i].second >= 0);
|
||||
CV_Assert_N(paddings[i].first >= 0, paddings[i].second >= 0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -127,8 +127,8 @@ public:
|
||||
const int padBottom = outHeight - dstRanges[2].end;
|
||||
const int padLeft = dstRanges[3].start;
|
||||
const int padRight = outWidth - dstRanges[3].end;
|
||||
CV_Assert(padTop < inpHeight, padBottom < inpHeight,
|
||||
padLeft < inpWidth, padRight < inpWidth);
|
||||
CV_CheckLT(padTop, inpHeight, ""); CV_CheckLT(padBottom, inpHeight, "");
|
||||
CV_CheckLT(padLeft, inpWidth, ""); CV_CheckLT(padRight, inpWidth, "");
|
||||
|
||||
for (size_t n = 0; n < inputs[0]->size[0]; ++n)
|
||||
{
|
||||
|
||||
@ -216,15 +216,15 @@ public:
|
||||
switch (type)
|
||||
{
|
||||
case MAX:
|
||||
CV_Assert(inputs.size() == 1, outputs.size() == 2);
|
||||
CV_Assert_N(inputs.size() == 1, outputs.size() == 2);
|
||||
maxPooling(*inputs[0], outputs[0], outputs[1]);
|
||||
break;
|
||||
case AVE:
|
||||
CV_Assert(inputs.size() == 1, outputs.size() == 1);
|
||||
CV_Assert_N(inputs.size() == 1, outputs.size() == 1);
|
||||
avePooling(*inputs[0], outputs[0]);
|
||||
break;
|
||||
case ROI: case PSROI:
|
||||
CV_Assert(inputs.size() == 2, outputs.size() == 1);
|
||||
CV_Assert_N(inputs.size() == 2, outputs.size() == 1);
|
||||
roiPooling(*inputs[0], *inputs[1], outputs[0]);
|
||||
break;
|
||||
default:
|
||||
@ -311,7 +311,8 @@ public:
|
||||
Size stride, Size pad, bool avePoolPaddedArea, int poolingType, float spatialScale,
|
||||
bool computeMaxIdx, int nstripes)
|
||||
{
|
||||
CV_Assert(src.isContinuous(), dst.isContinuous(),
|
||||
CV_Assert_N(
|
||||
src.isContinuous(), dst.isContinuous(),
|
||||
src.type() == CV_32F, src.type() == dst.type(),
|
||||
src.dims == 4, dst.dims == 4,
|
||||
((poolingType == ROI || poolingType == PSROI) && dst.size[0] ==rois.size[0] || src.size[0] == dst.size[0]),
|
||||
|
||||
@ -254,7 +254,7 @@ public:
|
||||
}
|
||||
if (params.has("offset_h") || params.has("offset_w"))
|
||||
{
|
||||
CV_Assert(!params.has("offset"), params.has("offset_h"), params.has("offset_w"));
|
||||
CV_Assert_N(!params.has("offset"), params.has("offset_h"), params.has("offset_w"));
|
||||
getParams("offset_h", params, &_offsetsY);
|
||||
getParams("offset_w", params, &_offsetsX);
|
||||
CV_Assert(_offsetsX.size() == _offsetsY.size());
|
||||
@ -299,7 +299,8 @@ public:
|
||||
|
||||
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() > 1, inputs[0]->dims == 4, inputs[1]->dims == 4);
|
||||
CV_CheckGT(inputs.size(), (size_t)1, "");
|
||||
CV_CheckEQ(inputs[0]->dims, 4, ""); CV_CheckEQ(inputs[1]->dims, 4, "");
|
||||
int layerWidth = inputs[0]->size[3];
|
||||
int layerHeight = inputs[0]->size[2];
|
||||
|
||||
@ -486,8 +487,8 @@ public:
|
||||
|
||||
if (_explicitSizes)
|
||||
{
|
||||
CV_Assert(!_boxWidths.empty(), !_boxHeights.empty(),
|
||||
_boxWidths.size() == _boxHeights.size());
|
||||
CV_Assert(!_boxWidths.empty()); CV_Assert(!_boxHeights.empty());
|
||||
CV_Assert(_boxWidths.size() == _boxHeights.size());
|
||||
ieLayer->params["width"] = format("%f", _boxWidths[0]);
|
||||
ieLayer->params["height"] = format("%f", _boxHeights[0]);
|
||||
for (int i = 1; i < _boxWidths.size(); ++i)
|
||||
@ -529,7 +530,7 @@ public:
|
||||
ieLayer->params["step_h"] = format("%f", _stepY);
|
||||
ieLayer->params["step_w"] = format("%f", _stepX);
|
||||
}
|
||||
CV_Assert(_offsetsX.size() == 1, _offsetsY.size() == 1, _offsetsX[0] == _offsetsY[0]);
|
||||
CV_CheckEQ(_offsetsX.size(), (size_t)1, ""); CV_CheckEQ(_offsetsY.size(), (size_t)1, ""); CV_CheckEQ(_offsetsX[0], _offsetsY[0], "");
|
||||
ieLayer->params["offset"] = format("%f", _offsetsX[0]);
|
||||
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
||||
|
||||
@ -197,7 +197,7 @@ public:
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(inputs.size() == 2, total(inputs[0]) == total(inputs[1]));
|
||||
CV_Assert_N(inputs.size() == 2, total(inputs[0]) == total(inputs[1]));
|
||||
outputs.assign(1, inputs[1]);
|
||||
}
|
||||
return true;
|
||||
|
||||
@ -43,7 +43,7 @@ public:
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() == 1, inputs[0].size() == 4);
|
||||
CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4);
|
||||
outputs.resize(1, inputs[0]);
|
||||
outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight);
|
||||
outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth);
|
||||
@ -106,7 +106,7 @@ public:
|
||||
const int inpSpatialSize = inpHeight * inpWidth;
|
||||
const int outSpatialSize = outHeight * outWidth;
|
||||
const int numPlanes = inp.size[0] * inp.size[1];
|
||||
CV_Assert(inp.isContinuous(), out.isContinuous());
|
||||
CV_Assert_N(inp.isContinuous(), out.isContinuous());
|
||||
|
||||
Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight);
|
||||
Mat outPlanes = out.reshape(1, numPlanes * outHeight);
|
||||
@ -184,7 +184,7 @@ public:
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() == 1, inputs[0].size() == 4);
|
||||
CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4);
|
||||
outputs.resize(1, inputs[0]);
|
||||
outputs[0][2] = outHeight > 0 ? outHeight : (1 + zoomFactorHeight * (outputs[0][2] - 1));
|
||||
outputs[0][3] = outWidth > 0 ? outWidth : (1 + zoomFactorWidth * (outputs[0][3] - 1));
|
||||
|
||||
@ -64,7 +64,7 @@ public:
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
CV_Assert(outputs.size() == 1, !blobs.empty() || inputs.size() == 2);
|
||||
CV_Assert_N(outputs.size() == 1, !blobs.empty() || inputs.size() == 2);
|
||||
|
||||
Mat &inpBlob = *inputs[0];
|
||||
Mat &outBlob = outputs[0];
|
||||
@ -76,7 +76,9 @@ public:
|
||||
weights = weights.reshape(1, 1);
|
||||
MatShape inpShape = shape(inpBlob);
|
||||
const int numWeights = !weights.empty() ? weights.total() : bias.total();
|
||||
CV_Assert(numWeights != 0, !hasWeights || !hasBias || weights.total() == bias.total());
|
||||
CV_Assert(numWeights != 0);
|
||||
if (hasWeights && hasBias)
|
||||
CV_CheckEQ(weights.total(), bias.total(), "Incompatible weights/bias blobs");
|
||||
|
||||
int endAxis;
|
||||
for (endAxis = axis + 1; endAxis <= inpBlob.dims; ++endAxis)
|
||||
@ -84,9 +86,9 @@ public:
|
||||
if (total(inpShape, axis, endAxis) == numWeights)
|
||||
break;
|
||||
}
|
||||
CV_Assert(total(inpShape, axis, endAxis) == numWeights,
|
||||
!hasBias || numWeights == bias.total(),
|
||||
inpBlob.type() == CV_32F && outBlob.type() == CV_32F);
|
||||
CV_Assert(total(inpShape, axis, endAxis) == numWeights);
|
||||
CV_Assert(!hasBias || numWeights == bias.total());
|
||||
CV_CheckTypeEQ(inpBlob.type(), CV_32FC1, ""); CV_CheckTypeEQ(outBlob.type(), CV_32FC1, "");
|
||||
|
||||
int numSlices = total(inpShape, 0, axis);
|
||||
float* inpData = (float*)inpBlob.data;
|
||||
|
||||
@ -25,7 +25,7 @@ void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
|
||||
const float score_threshold, const float nms_threshold,
|
||||
std::vector<int>& indices, const float eta, const int top_k)
|
||||
{
|
||||
CV_Assert(bboxes.size() == scores.size(), score_threshold >= 0,
|
||||
CV_Assert_N(bboxes.size() == scores.size(), score_threshold >= 0,
|
||||
nms_threshold >= 0, eta > 0);
|
||||
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap);
|
||||
}
|
||||
@ -46,7 +46,7 @@ void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>&
|
||||
const float score_threshold, const float nms_threshold,
|
||||
std::vector<int>& indices, const float eta, const int top_k)
|
||||
{
|
||||
CV_Assert(bboxes.size() == scores.size(), score_threshold >= 0,
|
||||
CV_Assert_N(bboxes.size() == scores.size(), score_threshold >= 0,
|
||||
nms_threshold >= 0, eta > 0);
|
||||
NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rotatedRectIOU);
|
||||
}
|
||||
|
||||
@ -221,7 +221,7 @@ public:
|
||||
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
||||
{
|
||||
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
|
||||
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1);
|
||||
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
|
||||
|
||||
fusedNode->mutable_input()->RemoveLast();
|
||||
fusedNode->clear_attr();
|
||||
@ -256,7 +256,7 @@ public:
|
||||
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
||||
{
|
||||
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
|
||||
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1);
|
||||
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
|
||||
|
||||
fusedNode->mutable_input()->RemoveLast();
|
||||
fusedNode->clear_attr();
|
||||
@ -593,7 +593,7 @@ public:
|
||||
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
||||
{
|
||||
Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor());
|
||||
CV_Assert(factorsMat.total() == 2, factorsMat.type() == CV_32SC1);
|
||||
CV_CheckEQ(factorsMat.total(), (size_t)2, ""); CV_CheckTypeEQ(factorsMat.type(), CV_32SC1, "");
|
||||
|
||||
// Height scale factor
|
||||
tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
|
||||
|
||||
@ -545,8 +545,8 @@ const tensorflow::TensorProto& TFImporter::getConstBlob(const tensorflow::NodeDe
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(nodeIdx < netTxt.node_size(),
|
||||
netTxt.node(nodeIdx).name() == kernel_inp.name);
|
||||
CV_Assert_N(nodeIdx < netTxt.node_size(),
|
||||
netTxt.node(nodeIdx).name() == kernel_inp.name);
|
||||
return netTxt.node(nodeIdx).attr().at("value").tensor();
|
||||
}
|
||||
}
|
||||
@ -587,8 +587,8 @@ static void addConstNodes(tensorflow::GraphDef& net, std::map<String, int>& cons
|
||||
|
||||
Mat qMin = getTensorContent(net.node(minId).attr().at("value").tensor());
|
||||
Mat qMax = getTensorContent(net.node(maxId).attr().at("value").tensor());
|
||||
CV_Assert(qMin.total() == 1, qMin.type() == CV_32FC1,
|
||||
qMax.total() == 1, qMax.type() == CV_32FC1);
|
||||
CV_Assert_N(qMin.total() == 1, qMin.type() == CV_32FC1,
|
||||
qMax.total() == 1, qMax.type() == CV_32FC1);
|
||||
|
||||
Mat content = getTensorContent(*tensor);
|
||||
|
||||
@ -1295,8 +1295,9 @@ void TFImporter::populateNet(Net dstNet)
|
||||
CV_Assert(layer.input_size() == 3);
|
||||
Mat begins = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||
Mat sizes = getTensorContent(getConstBlob(layer, value_id, 2));
|
||||
CV_Assert(!begins.empty(), !sizes.empty(), begins.type() == CV_32SC1,
|
||||
sizes.type() == CV_32SC1);
|
||||
CV_Assert_N(!begins.empty(), !sizes.empty());
|
||||
CV_CheckTypeEQ(begins.type(), CV_32SC1, "");
|
||||
CV_CheckTypeEQ(sizes.type(), CV_32SC1, "");
|
||||
|
||||
if (begins.total() == 4 && getDataLayout(name, data_layouts) == DATA_LAYOUT_NHWC)
|
||||
{
|
||||
@ -1665,7 +1666,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
if (layer.input_size() == 2)
|
||||
{
|
||||
Mat outSize = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||
CV_Assert(outSize.type() == CV_32SC1, outSize.total() == 2);
|
||||
CV_CheckTypeEQ(outSize.type(), CV_32SC1, ""); CV_CheckEQ(outSize.total(), (size_t)2, "");
|
||||
layerParams.set("height", outSize.at<int>(0, 0));
|
||||
layerParams.set("width", outSize.at<int>(0, 1));
|
||||
}
|
||||
@ -1673,8 +1674,8 @@ void TFImporter::populateNet(Net dstNet)
|
||||
{
|
||||
Mat factorHeight = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||
Mat factorWidth = getTensorContent(getConstBlob(layer, value_id, 2));
|
||||
CV_Assert(factorHeight.type() == CV_32SC1, factorHeight.total() == 1,
|
||||
factorWidth.type() == CV_32SC1, factorWidth.total() == 1);
|
||||
CV_CheckTypeEQ(factorHeight.type(), CV_32SC1, ""); CV_CheckEQ(factorHeight.total(), (size_t)1, "");
|
||||
CV_CheckTypeEQ(factorWidth.type(), CV_32SC1, ""); CV_CheckEQ(factorWidth.total(), (size_t)1, "");
|
||||
layerParams.set("zoom_factor_x", factorWidth.at<int>(0));
|
||||
layerParams.set("zoom_factor_y", factorHeight.at<int>(0));
|
||||
}
|
||||
@ -1772,7 +1773,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
CV_Assert(layer.input_size() == 3);
|
||||
|
||||
Mat cropSize = getTensorContent(getConstBlob(layer, value_id, 2));
|
||||
CV_Assert(cropSize.type() == CV_32SC1, cropSize.total() == 2);
|
||||
CV_CheckTypeEQ(cropSize.type(), CV_32SC1, ""); CV_CheckEQ(cropSize.total(), (size_t)2, "");
|
||||
|
||||
layerParams.set("height", cropSize.at<int>(0));
|
||||
layerParams.set("width", cropSize.at<int>(1));
|
||||
@ -1826,8 +1827,8 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
Mat minValue = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||
Mat maxValue = getTensorContent(getConstBlob(layer, value_id, 2));
|
||||
CV_Assert(minValue.total() == 1, minValue.type() == CV_32F,
|
||||
maxValue.total() == 1, maxValue.type() == CV_32F);
|
||||
CV_CheckEQ(minValue.total(), (size_t)1, ""); CV_CheckTypeEQ(minValue.type(), CV_32FC1, "");
|
||||
CV_CheckEQ(maxValue.total(), (size_t)1, ""); CV_CheckTypeEQ(maxValue.type(), CV_32FC1, "");
|
||||
|
||||
layerParams.set("min_value", minValue.at<float>(0));
|
||||
layerParams.set("max_value", maxValue.at<float>(0));
|
||||
|
||||
@ -896,8 +896,8 @@ struct TorchImporter
|
||||
else if (nnName == "SpatialZeroPadding" || nnName == "SpatialReflectionPadding")
|
||||
{
|
||||
readTorchTable(scalarParams, tensorParams);
|
||||
CV_Assert(scalarParams.has("pad_l"), scalarParams.has("pad_r"),
|
||||
scalarParams.has("pad_t"), scalarParams.has("pad_b"));
|
||||
CV_Assert_N(scalarParams.has("pad_l"), scalarParams.has("pad_r"),
|
||||
scalarParams.has("pad_t"), scalarParams.has("pad_b"));
|
||||
int padTop = scalarParams.get<int>("pad_t");
|
||||
int padLeft = scalarParams.get<int>("pad_l");
|
||||
int padRight = scalarParams.get<int>("pad_r");
|
||||
|
||||
@ -113,7 +113,11 @@ TEST_P(Convolution, Accuracy)
|
||||
bool skipCheck = false;
|
||||
if (cvtest::skipUnstableTests && backendId == DNN_BACKEND_OPENCV &&
|
||||
(targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) &&
|
||||
kernel == Size(3, 1) && stride == Size(1, 1) && pad == Size(0, 1))
|
||||
(
|
||||
(kernel == Size(3, 1) && stride == Size(1, 1) && pad == Size(0, 1)) ||
|
||||
(stride.area() > 1 && !(pad.width == 0 && pad.height == 0))
|
||||
)
|
||||
)
|
||||
skipCheck = true;
|
||||
|
||||
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width};
|
||||
|
||||
@ -814,7 +814,7 @@ TEST_P(Layer_Test_DWconv_Prelu, Accuracy)
|
||||
const int group = 3; //outChannels=group when group>1
|
||||
const int num_output = get<1>(GetParam());
|
||||
const int kernel_depth = num_input/group;
|
||||
CV_Assert(num_output >= group, num_output % group == 0, num_input % group == 0);
|
||||
CV_Assert_N(num_output >= group, num_output % group == 0, num_input % group == 0);
|
||||
|
||||
Net net;
|
||||
//layer 1: dwconv
|
||||
|
||||
@ -1500,7 +1500,7 @@ MainWindowProc( HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam )
|
||||
rgn = CreateRectRgn(0, 0, wrc.right, wrc.bottom);
|
||||
rgn1 = CreateRectRgn(cr.left, cr.top, cr.right, cr.bottom);
|
||||
rgn2 = CreateRectRgn(tr.left, tr.top, tr.right, tr.bottom);
|
||||
CV_Assert(rgn != 0, rgn1 != 0, rgn2 != 0);
|
||||
CV_Assert_N(rgn != 0, rgn1 != 0, rgn2 != 0);
|
||||
|
||||
ret = CombineRgn(rgn, rgn, rgn1, RGN_DIFF);
|
||||
ret = CombineRgn(rgn, rgn, rgn2, RGN_DIFF);
|
||||
|
||||
@ -50,8 +50,8 @@
|
||||
//! @addtogroup imgcodecs_ios
|
||||
//! @{
|
||||
|
||||
UIImage* MatToUIImage(const cv::Mat& image);
|
||||
void UIImageToMat(const UIImage* image,
|
||||
cv::Mat& m, bool alphaExist = false);
|
||||
CV_EXPORTS UIImage* MatToUIImage(const cv::Mat& image);
|
||||
CV_EXPORTS void UIImageToMat(const UIImage* image,
|
||||
cv::Mat& m, bool alphaExist = false);
|
||||
|
||||
//! @}
|
||||
|
||||
@ -47,8 +47,8 @@
|
||||
#include "opencv2/core.hpp"
|
||||
#include "precomp.hpp"
|
||||
|
||||
UIImage* MatToUIImage(const cv::Mat& image);
|
||||
void UIImageToMat(const UIImage* image, cv::Mat& m, bool alphaExist);
|
||||
CV_EXPORTS UIImage* MatToUIImage(const cv::Mat& image);
|
||||
CV_EXPORTS void UIImageToMat(const UIImage* image, cv::Mat& m, bool alphaExist);
|
||||
|
||||
UIImage* MatToUIImage(const cv::Mat& image) {
|
||||
|
||||
|
||||
@ -859,45 +859,39 @@ static int read_frame_v4l2(CvCaptureCAM_V4L* capture) {
|
||||
}
|
||||
|
||||
static int mainloop_v4l2(CvCaptureCAM_V4L* capture) {
|
||||
unsigned int count;
|
||||
for (;;) {
|
||||
fd_set fds;
|
||||
struct timeval tv;
|
||||
int r;
|
||||
|
||||
count = 1;
|
||||
FD_ZERO (&fds);
|
||||
FD_SET (capture->deviceHandle, &fds);
|
||||
|
||||
while (count-- > 0) {
|
||||
for (;;) {
|
||||
fd_set fds;
|
||||
struct timeval tv;
|
||||
int r;
|
||||
/* Timeout. */
|
||||
tv.tv_sec = 10;
|
||||
tv.tv_usec = 0;
|
||||
|
||||
FD_ZERO (&fds);
|
||||
FD_SET (capture->deviceHandle, &fds);
|
||||
r = select (capture->deviceHandle+1, &fds, NULL, NULL, &tv);
|
||||
|
||||
/* Timeout. */
|
||||
tv.tv_sec = 10;
|
||||
tv.tv_usec = 0;
|
||||
if (-1 == r) {
|
||||
if (EINTR == errno)
|
||||
continue;
|
||||
|
||||
r = select (capture->deviceHandle+1, &fds, NULL, NULL, &tv);
|
||||
|
||||
if (-1 == r) {
|
||||
if (EINTR == errno)
|
||||
continue;
|
||||
|
||||
perror ("select");
|
||||
}
|
||||
|
||||
if (0 == r) {
|
||||
fprintf (stderr, "select timeout\n");
|
||||
|
||||
/* end the infinite loop */
|
||||
break;
|
||||
}
|
||||
|
||||
int returnCode = read_frame_v4l2 (capture);
|
||||
if(returnCode == -1)
|
||||
return -1;
|
||||
if(returnCode == 1)
|
||||
return 1;
|
||||
perror ("select");
|
||||
}
|
||||
|
||||
if (0 == r) {
|
||||
fprintf (stderr, "select timeout\n");
|
||||
|
||||
/* end the infinite loop */
|
||||
break;
|
||||
}
|
||||
|
||||
int returnCode = read_frame_v4l2 (capture);
|
||||
if(returnCode == -1)
|
||||
return -1;
|
||||
if(returnCode == 1)
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -49,7 +49,6 @@ int main(int argc, char** argv)
|
||||
float scale = parser.get<float>("scale");
|
||||
Scalar mean = parser.get<Scalar>("mean");
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
CV_Assert(parser.has("width"), parser.has("height"));
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
String model = parser.get<String>("model");
|
||||
@ -72,7 +71,13 @@ int main(int argc, char** argv)
|
||||
}
|
||||
}
|
||||
|
||||
CV_Assert(parser.has("model"));
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
return 1;
|
||||
}
|
||||
CV_Assert(!model.empty());
|
||||
|
||||
//! [Read and initialize network]
|
||||
Net net = readNet(model, config, framework);
|
||||
net.setPreferableBackend(backendId);
|
||||
|
||||
@ -108,7 +108,7 @@ public:
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(blobs.size() == 2, blobs[0].total() == 1, blobs[1].total() == 1);
|
||||
CV_Assert(blobs.size() == 2); CV_Assert(blobs[0].total() == 1); CV_Assert(blobs[1].total() == 1);
|
||||
factorHeight = blobs[0].at<int>(0, 0);
|
||||
factorWidth = blobs[1].at<int>(0, 0);
|
||||
outHeight = outWidth = 0;
|
||||
|
||||
@ -57,7 +57,6 @@ int main(int argc, char** argv)
|
||||
float scale = parser.get<float>("scale");
|
||||
Scalar mean = parser.get<Scalar>("mean");
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
CV_Assert(parser.has("width"), parser.has("height"));
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
String model = parser.get<String>("model");
|
||||
@ -99,7 +98,13 @@ int main(int argc, char** argv)
|
||||
}
|
||||
}
|
||||
|
||||
CV_Assert(parser.has("model"));
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
return 1;
|
||||
}
|
||||
|
||||
CV_Assert(!model.empty());
|
||||
//! [Read and initialize network]
|
||||
Net net = readNet(model, config, framework);
|
||||
net.setPreferableBackend(backendId);
|
||||
|
||||
@ -33,9 +33,16 @@ int main(int argc, char** argv)
|
||||
float nmsThreshold = parser.get<float>("nms");
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
CV_Assert(parser.has("model"));
|
||||
String model = parser.get<String>("model");
|
||||
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
return 1;
|
||||
}
|
||||
|
||||
CV_Assert(!model.empty());
|
||||
|
||||
// Load network.
|
||||
Net net = readNet(model);
|
||||
|
||||
@ -113,9 +120,9 @@ void decode(const Mat& scores, const Mat& geometry, float scoreThresh,
|
||||
std::vector<RotatedRect>& detections, std::vector<float>& confidences)
|
||||
{
|
||||
detections.clear();
|
||||
CV_Assert(scores.dims == 4, geometry.dims == 4, scores.size[0] == 1,
|
||||
geometry.size[0] == 1, scores.size[1] == 1, geometry.size[1] == 5,
|
||||
scores.size[2] == geometry.size[2], scores.size[3] == geometry.size[3]);
|
||||
CV_Assert(scores.dims == 4); CV_Assert(geometry.dims == 4); CV_Assert(scores.size[0] == 1);
|
||||
CV_Assert(geometry.size[0] == 1); CV_Assert(scores.size[1] == 1); CV_Assert(geometry.size[1] == 5);
|
||||
CV_Assert(scores.size[2] == geometry.size[2]); CV_Assert(scores.size[3] == geometry.size[3]);
|
||||
|
||||
const int height = scores.size[2];
|
||||
const int width = scores.size[3];
|
||||
|
||||
Loading…
Reference in New Issue
Block a user