Merge pull request #16715 from l-bat:slice_onnx
* Support Slice layer with multiple inputs * Add test * Supported Resize from PyTorch * Rewrite test * Remove Cast layer (supported in #16735) * Support ConstantOfShape * Fix tests * Fix coments * Remove useless condition * Fixed failed tests
This commit is contained in:
parent
1d7bfcc958
commit
718d7e4b04
@ -367,45 +367,97 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
}
|
||||
else if (layer_type == "Slice")
|
||||
{
|
||||
if (layerParams.has("steps")) {
|
||||
DictValue steps = layerParams.get("steps");
|
||||
for (int i = 0; i < steps.size(); ++i) {
|
||||
if (steps.get<int>(i) != 1)
|
||||
CV_Error(Error::StsNotImplemented,
|
||||
"Slice layer only supports steps = 1");
|
||||
}
|
||||
}
|
||||
|
||||
int axis = 0;
|
||||
if (layerParams.has("axes")) {
|
||||
DictValue axes = layerParams.get("axes");
|
||||
for (int i = 1; i < axes.size(); ++i) {
|
||||
CV_Assert(axes.get<int>(i - 1) == axes.get<int>(i) - 1);
|
||||
}
|
||||
axis = axes.get<int>(0);
|
||||
}
|
||||
layerParams.set("axis", axis);
|
||||
|
||||
DictValue starts = layerParams.get("starts");
|
||||
DictValue ends = layerParams.get("ends");
|
||||
CV_Assert(starts.size() == ends.size());
|
||||
|
||||
std::vector<int> begin;
|
||||
std::vector<int> end;
|
||||
if (axis > 0) {
|
||||
begin.resize(axis, 0);
|
||||
end.resize(axis, -1);
|
||||
}
|
||||
int inp_size = node_proto.input_size();
|
||||
|
||||
for (int i = 0; i < starts.size(); ++i)
|
||||
if (inp_size == 1)
|
||||
{
|
||||
begin.push_back(starts.get<int>(i));
|
||||
int finish = ends.get<int>(i);
|
||||
end.push_back((finish < 0) ? --finish : finish); // numpy doesn't include last dim
|
||||
if (layerParams.has("steps"))
|
||||
{
|
||||
DictValue steps = layerParams.get("steps");
|
||||
for (int i = 0; i < steps.size(); ++i)
|
||||
{
|
||||
if (steps.get<int>(i) != 1)
|
||||
CV_Error(Error::StsNotImplemented,
|
||||
"Slice layer only supports steps = 1");
|
||||
}
|
||||
}
|
||||
if (layerParams.has("axes")) {
|
||||
DictValue axes = layerParams.get("axes");
|
||||
for (int i = 1; i < axes.size(); ++i) {
|
||||
CV_Assert(axes.get<int>(i - 1) == axes.get<int>(i) - 1);
|
||||
}
|
||||
axis = axes.get<int>(0);
|
||||
}
|
||||
|
||||
DictValue starts = layerParams.get("starts");
|
||||
DictValue ends = layerParams.get("ends");
|
||||
CV_Assert(starts.size() == ends.size());
|
||||
|
||||
if (axis > 0) {
|
||||
begin.resize(axis, 0);
|
||||
end.resize(axis, -1);
|
||||
}
|
||||
for (int i = 0; i < starts.size(); ++i)
|
||||
{
|
||||
begin.push_back(starts.get<int>(i));
|
||||
int finish = ends.get<int>(i);
|
||||
end.push_back((finish < 0) ? --finish : finish); // numpy doesn't include last dim
|
||||
}
|
||||
} else {
|
||||
CV_Assert(inp_size >= 3);
|
||||
for (int i = 1; i < inp_size; i++) {
|
||||
CV_Assert(constBlobs.find(node_proto.input(i)) != constBlobs.end());
|
||||
}
|
||||
Mat start_blob = getBlob(node_proto, constBlobs, 1);
|
||||
Mat end_blob = getBlob(node_proto, constBlobs, 2);
|
||||
CV_Assert(start_blob.total() == end_blob.total());
|
||||
|
||||
if (inp_size > 3) {
|
||||
Mat axes_blob = getBlob(node_proto, constBlobs, 3);
|
||||
const int* axes = (int*)axes_blob.data;
|
||||
for (int i = 1; i < axes_blob.total(); ++i) {
|
||||
CV_Assert(axes[i - 1] == axes[i] - 1);
|
||||
}
|
||||
axis = axes[0];
|
||||
}
|
||||
|
||||
const int* starts = start_blob.ptr<int>();
|
||||
const int* ends = end_blob.ptr<int>();
|
||||
if (axis > 0) {
|
||||
begin.resize(axis, 0);
|
||||
end.resize(axis, -1);
|
||||
}
|
||||
std::copy(starts, starts + start_blob.total(), std::back_inserter(begin));
|
||||
for (int i = 0; i < end_blob.total(); ++i)
|
||||
{
|
||||
int finish = ends[i];
|
||||
end.push_back((finish < 0) ? --finish : finish); // numpy doesn't include last dim
|
||||
}
|
||||
|
||||
if (inp_size == 5) {
|
||||
CV_Assert(constBlobs.find(node_proto.input(4)) != constBlobs.end());
|
||||
Mat step_blob = getBlob(node_proto, constBlobs, 4);
|
||||
CV_CheckEQ(countNonZero(step_blob != 1), 0, "Slice layer only supports steps = 1");
|
||||
}
|
||||
}
|
||||
layerParams.set("begin", DictValue::arrayInt(&begin[0], begin.size()));
|
||||
layerParams.set("end", DictValue::arrayInt(&end[0], end.size()));
|
||||
}
|
||||
layerParams.set("axis", axis);
|
||||
|
||||
if (constBlobs.find(node_proto.input(0)) != constBlobs.end())
|
||||
{
|
||||
Mat inp = getBlob(node_proto, constBlobs, 0);
|
||||
std::vector<Mat> inputs, sliced;
|
||||
inputs.push_back(inp);
|
||||
runLayer(layerParams, inputs, sliced);
|
||||
CV_Assert(sliced.size() == 1);
|
||||
constBlobs.insert(std::make_pair(layerParams.name, sliced[0]));
|
||||
continue;
|
||||
}
|
||||
}
|
||||
else if (layer_type == "Split")
|
||||
{
|
||||
if (layerParams.has("split"))
|
||||
@ -444,16 +496,35 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
}
|
||||
else if (is_const_0 || is_const_1)
|
||||
{
|
||||
Mat blob = getBlob(node_proto, constBlobs, is_const_0 ? 0 : 1);
|
||||
blob = blob.reshape(1, 1);
|
||||
if (blob.total() == 1) {
|
||||
int const_blob_id = is_const_0 ? 0 : 1;
|
||||
Mat blob = getBlob(node_proto, constBlobs, const_blob_id);
|
||||
int blob_total = blob.total();
|
||||
if (blob_total == 1) {
|
||||
layerParams.type = "Power";
|
||||
layerParams.set("shift", (isSub ? -1 : 1) * blob.at<float>(0));
|
||||
}
|
||||
else {
|
||||
layerParams.type = "Scale";
|
||||
layerParams.set("bias_term", true);
|
||||
layerParams.blobs.push_back((isSub ? -1 : 1) * blob);
|
||||
MatShape inpShape = outShapes[node_proto.input(1 - const_blob_id)];
|
||||
if (shape(blob) == inpShape)
|
||||
{
|
||||
LayerParams constParams;
|
||||
constParams.name = layerParams.name + "/const";
|
||||
constParams.type = "Const";
|
||||
constParams.blobs.push_back(blob);
|
||||
int id = dstNet.addLayer(constParams.name, constParams.type, constParams);
|
||||
layer_id.insert(std::make_pair(constParams.name, LayerInfo(id, 0)));
|
||||
outShapes[constParams.name] = shape(blob);
|
||||
|
||||
layerParams.type = "Eltwise";
|
||||
node_proto.set_input(const_blob_id, constParams.name);
|
||||
}
|
||||
else
|
||||
{
|
||||
layerParams.type = "Scale";
|
||||
layerParams.set("bias_term", true);
|
||||
blob = blob.reshape(1, 1);
|
||||
layerParams.blobs.push_back((isSub ? -1 : 1) * blob);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)])
|
||||
@ -947,6 +1018,17 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
else
|
||||
layerParams.type = "Identity";
|
||||
}
|
||||
else if (layer_type == "ConstantOfShape")
|
||||
{
|
||||
float fill_value = layerParams.blobs.empty() ? 0 : layerParams.blobs[0].at<float>(0, 0);
|
||||
MatShape inpShape = getBlob(node_proto, constBlobs, 0);
|
||||
for (int i = 0; i < inpShape.size(); i++)
|
||||
CV_CheckGT(inpShape[i], 0, "");
|
||||
Mat tensor(inpShape.size(), &inpShape[0], CV_32F, Scalar(fill_value));
|
||||
constBlobs.insert(std::make_pair(layerParams.name, tensor));
|
||||
outShapes[node_proto.output(0)] = shape(tensor);
|
||||
continue;
|
||||
}
|
||||
else if (layer_type == "Gather")
|
||||
{
|
||||
CV_Assert(node_proto.input_size() == 2);
|
||||
@ -990,6 +1072,39 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
continue;
|
||||
}
|
||||
}
|
||||
else if (layer_type == "Resize")
|
||||
{
|
||||
for (int i = 1; i < node_proto.input_size(); i++)
|
||||
CV_Assert(layer_id.find(node_proto.input(i)) == layer_id.end());
|
||||
|
||||
String interp_mode = layerParams.get<String>("coordinate_transformation_mode");
|
||||
CV_Assert_N(interp_mode != "tf_crop_and_resize", interp_mode != "asymmetric",
|
||||
interp_mode != "tf_half_pixel_for_nn");
|
||||
|
||||
layerParams.set("align_corners", interp_mode == "align_corners");
|
||||
Mat shapes = getBlob(node_proto, constBlobs, node_proto.input_size() - 1);
|
||||
CV_CheckEQ(shapes.size[0], 4, "");
|
||||
CV_CheckEQ(shapes.size[1], 1, "");
|
||||
CV_CheckTypeEQ(shapes.depth(), CV_32S, "");
|
||||
int height = shapes.at<int>(2);
|
||||
int width = shapes.at<int>(3);
|
||||
if (node_proto.input_size() == 3)
|
||||
{
|
||||
shapeIt = outShapes.find(node_proto.input(0));
|
||||
CV_Assert(shapeIt != outShapes.end());
|
||||
MatShape scales = shapeIt->second;
|
||||
height *= scales[2];
|
||||
width *= scales[3];
|
||||
}
|
||||
layerParams.set("width", width);
|
||||
layerParams.set("height", height);
|
||||
|
||||
if (layerParams.get<String>("mode") == "linear") {
|
||||
layerParams.set("mode", interp_mode == "pytorch_half_pixel" ?
|
||||
"opencv_linear" : "bilinear");
|
||||
}
|
||||
replaceLayerParam(layerParams, "mode", "interpolation");
|
||||
}
|
||||
else if (layer_type == "Upsample")
|
||||
{
|
||||
layerParams.type = "Resize";
|
||||
@ -1038,10 +1153,12 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
}
|
||||
|
||||
std::vector<MatShape> layerInpShapes, layerOutShapes, layerInternalShapes;
|
||||
int inpNum = 0;
|
||||
for (int j = 0; j < node_proto.input_size(); j++) {
|
||||
layerId = layer_id.find(node_proto.input(j));
|
||||
if (layerId != layer_id.end()) {
|
||||
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, j);
|
||||
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, inpNum);
|
||||
++inpNum;
|
||||
// Collect input shapes.
|
||||
shapeIt = outShapes.find(node_proto.input(j));
|
||||
CV_Assert(shapeIt != outShapes.end());
|
||||
|
||||
@ -57,8 +57,13 @@ public:
|
||||
net.setPreferableBackend(backend);
|
||||
net.setPreferableTarget(target);
|
||||
|
||||
std::vector<String> inputNames;
|
||||
for (int i = 0; i < numInps; ++i)
|
||||
net.setInput(inps[i], numInps > 1 ? format("%d", i) : "");
|
||||
inputNames.push_back(format("%d", i));
|
||||
net.setInputsNames(inputNames);
|
||||
|
||||
for (int i = 0; i < numInps; ++i)
|
||||
net.setInput(inps[i], inputNames[i]);
|
||||
Mat out = net.forward("");
|
||||
|
||||
if (useSoftmax)
|
||||
@ -166,6 +171,11 @@ TEST_P(Test_ONNX_layers, Clip)
|
||||
testONNXModels("clip", npy);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Shape)
|
||||
{
|
||||
testONNXModels("shape_of_constant");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, ReduceMean)
|
||||
{
|
||||
testONNXModels("reduce_mean");
|
||||
@ -347,6 +357,11 @@ TEST_P(Test_ONNX_layers, Broadcast)
|
||||
testONNXModels("channel_broadcast", npy, 0, 0, false, true, 2);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, DynamicResize)
|
||||
{
|
||||
testONNXModels("dynamic_resize", npy, 0, 0, false, true, 2);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Div)
|
||||
{
|
||||
const String model = _tf("models/div.onnx");
|
||||
@ -375,10 +390,8 @@ TEST_P(Test_ONNX_layers, Div)
|
||||
TEST_P(Test_ONNX_layers, DynamicReshape)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
{
|
||||
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
}
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
|
||||
testONNXModels("dynamic_reshape");
|
||||
testONNXModels("dynamic_reshape_opset_11");
|
||||
testONNXModels("flatten_by_prod");
|
||||
@ -418,6 +431,7 @@ TEST_P(Test_ONNX_layers, Slice)
|
||||
testONNXModels("slice", npy, 0, 0, false, false);
|
||||
#else
|
||||
testONNXModels("slice");
|
||||
testONNXModels("slice_opset_11");
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user