diff --git a/samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py b/samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py old mode 100644 new mode 100755 index 4d089c2412..79333a4f94 --- a/samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py +++ b/samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py @@ -1,3 +1,5 @@ +#!/usr/bin/env python + import cv2 as cv import numpy as np @@ -44,8 +46,8 @@ test_cells = [ i[50:] for i in cells] ###### Now training ######################## -deskewed = [map(deskew,row) for row in train_cells] -hogdata = [map(hog,row) for row in deskewed] +deskewed = [list(map(deskew,row)) for row in train_cells] +hogdata = [list(map(hog,row)) for row in deskewed] trainData = np.float32(hogdata).reshape(-1,64) responses = np.repeat(np.arange(10),250)[:,np.newaxis] @@ -60,12 +62,12 @@ svm.save('svm_data.dat') ###### Now testing ######################## -deskewed = [map(deskew,row) for row in test_cells] -hogdata = [map(hog,row) for row in deskewed] +deskewed = [list(map(deskew,row)) for row in test_cells] +hogdata = [list(map(hog,row)) for row in deskewed] testData = np.float32(hogdata).reshape(-1,bin_n*4) result = svm.predict(testData)[1] ####### Check Accuracy ######################## mask = result==responses correct = np.count_nonzero(mask) -print correct*100.0/result.size +print(correct*100.0/result.size)