Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
80492d663e
@ -87,11 +87,3 @@ endif()
|
||||
set( CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} ${OPENCV_LINKER_DEFENSES_FLAGS_COMMON}" )
|
||||
set( CMAKE_MODULE_LINKER_FLAGS "${CMAKE_MODULE_LINKER_FLAGS} ${OPENCV_LINKER_DEFENSES_FLAGS_COMMON}" )
|
||||
set( CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OPENCV_LINKER_DEFENSES_FLAGS_COMMON}" )
|
||||
|
||||
if(CV_GCC OR CV_CLANG)
|
||||
foreach(flags
|
||||
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_RELEASE CMAKE_CXX_FLAGS_DEBUG
|
||||
CMAKE_C_FLAGS CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_DEBUG)
|
||||
string(REPLACE "-O3" "-O2" ${flags} "${${flags}}")
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
@ -1301,6 +1301,14 @@
|
||||
pages={281--305},
|
||||
year={1987}
|
||||
}
|
||||
@article{Bolelli2021,
|
||||
title={One DAG to Rule Them All},
|
||||
author={Bolelli, Federico and Allegretti, Stefano and Grana, Costantino},
|
||||
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
|
||||
year={2021},
|
||||
publisher={IEEE},
|
||||
doi = {10.1109/TPAMI.2021.3055337}
|
||||
}
|
||||
@inproceedings{liao2020real,
|
||||
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
|
||||
title={Real-time Scene Text Detection with Differentiable Binarization},
|
||||
|
||||
@ -107,7 +107,6 @@ public:
|
||||
{
|
||||
outputShapeVec.push_back(inputs[0][i]);
|
||||
}
|
||||
CV_Assert(outputShapeVec.size() <= 4);
|
||||
|
||||
outputs.resize(inputs.size(), outputShapeVec);
|
||||
|
||||
|
||||
@ -2023,20 +2023,67 @@ void ONNXImporter::parseSqueeze(LayerParams& layerParams, const opencv_onnx::Nod
|
||||
addLayer(layerParams, node_proto);
|
||||
}
|
||||
|
||||
void ONNXImporter::parseFlatten(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
|
||||
void ONNXImporter::parseFlatten(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
|
||||
{
|
||||
opencv_onnx::NodeProto node_proto = node_proto_;
|
||||
CV_CheckEQ(node_proto.input_size(), 1, "");
|
||||
int axis_ = layerParams.get<int>("axis", 1);
|
||||
if (constBlobs.find(node_proto.input(0)) != constBlobs.end())
|
||||
{
|
||||
Mat input = getBlob(node_proto, 0);
|
||||
int axis = normalize_axis(layerParams.get<int>("axis", 1), input.dims);
|
||||
int axis = normalize_axis(axis_, input.dims);
|
||||
|
||||
std::vector<int> out_size(&input.size[0], &input.size[0] + axis);
|
||||
out_size.push_back(input.total(axis));
|
||||
Mat output = input.reshape(1, out_size);
|
||||
int out_size[2] = {1, 1};
|
||||
for (int i = 0; i < axis; ++i)
|
||||
{
|
||||
out_size[0] *= input.size[i];
|
||||
}
|
||||
for (int i = axis; i < input.dims; ++i)
|
||||
{
|
||||
out_size[1] *= input.size[i];
|
||||
}
|
||||
|
||||
Mat output = input.reshape(1, 2, out_size);
|
||||
addConstant(layerParams.name, output);
|
||||
return;
|
||||
}
|
||||
IterShape_t shapeIt = outShapes.find(node_proto.input(0));
|
||||
CV_Assert(shapeIt != outShapes.end());
|
||||
MatShape inpShape = shapeIt->second;
|
||||
int axis = normalize_axis(axis_, inpShape.size());
|
||||
|
||||
if (axis == 0 || axis == inpShape.size())
|
||||
{
|
||||
LayerParams reshapeLp;
|
||||
reshapeLp.name = layerParams.name + "/reshape";
|
||||
reshapeLp.type = "Reshape";
|
||||
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end());
|
||||
|
||||
inpShape.insert(axis == 0 ? inpShape.begin() : inpShape.end(), 1);
|
||||
reshapeLp.set("dim", DictValue::arrayInt(&inpShape[0], inpShape.size()));
|
||||
|
||||
opencv_onnx::NodeProto proto;
|
||||
proto.add_input(node_proto.input(0));
|
||||
proto.add_output(reshapeLp.name);
|
||||
addLayer(reshapeLp, proto);
|
||||
node_proto.set_input(0, reshapeLp.name);
|
||||
axis += 1;
|
||||
}
|
||||
|
||||
LayerParams first_pass;
|
||||
first_pass.name = layerParams.name + "/flatten";
|
||||
CV_Assert(layer_id.find(first_pass.name) == layer_id.end());
|
||||
first_pass.type = "Flatten";
|
||||
first_pass.set("axis", 0);
|
||||
first_pass.set("end_axis", axis - 1);
|
||||
|
||||
opencv_onnx::NodeProto proto;
|
||||
proto.add_input(node_proto.input(0));
|
||||
proto.add_output(first_pass.name);
|
||||
addLayer(first_pass, proto);
|
||||
|
||||
layerParams.set("axis", 1);
|
||||
node_proto.set_input(0, first_pass.name);
|
||||
addLayer(layerParams, node_proto);
|
||||
}
|
||||
|
||||
|
||||
@ -53,12 +53,6 @@
|
||||
"test_elu",
|
||||
"test_elu_default",
|
||||
"test_exp",
|
||||
"test_flatten_axis0",
|
||||
"test_flatten_axis2",
|
||||
"test_flatten_axis3",
|
||||
"test_flatten_negative_axis1",
|
||||
"test_flatten_negative_axis2",
|
||||
"test_flatten_negative_axis4",
|
||||
"test_floor",
|
||||
"test_leakyrelu",
|
||||
"test_leakyrelu_default",
|
||||
|
||||
@ -629,35 +629,23 @@ CASE(test_eyelike_with_dtype)
|
||||
CASE(test_eyelike_without_dtype)
|
||||
// no filter
|
||||
CASE(test_flatten_axis0)
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||||
SKIP;
|
||||
#endif
|
||||
// no filter
|
||||
CASE(test_flatten_axis1)
|
||||
// no filter
|
||||
CASE(test_flatten_axis2)
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||||
SKIP;
|
||||
#endif
|
||||
// no filter
|
||||
CASE(test_flatten_axis3)
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||||
SKIP;
|
||||
#endif
|
||||
// no filter
|
||||
CASE(test_flatten_default_axis)
|
||||
// no filter
|
||||
CASE(test_flatten_negative_axis1)
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||||
SKIP;
|
||||
#endif
|
||||
// no filter
|
||||
CASE(test_flatten_negative_axis2)
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||||
SKIP;
|
||||
#endif
|
||||
// no filter
|
||||
CASE(test_flatten_negative_axis3)
|
||||
// no filter
|
||||
CASE(test_flatten_negative_axis4)
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||||
SKIP;
|
||||
#endif
|
||||
// no filter
|
||||
CASE(test_floor)
|
||||
// no filter
|
||||
CASE(test_floor_example)
|
||||
|
||||
@ -43,12 +43,6 @@
|
||||
"test_castlike_STRING_to_FLOAT_expanded",
|
||||
"test_concat_1d_axis_negative_1",
|
||||
"test_div_uint8", // output type mismatch
|
||||
"test_flatten_axis0",
|
||||
"test_flatten_axis2",
|
||||
"test_flatten_axis3",
|
||||
"test_flatten_negative_axis1",
|
||||
"test_flatten_negative_axis2",
|
||||
"test_flatten_negative_axis4",
|
||||
"test_logsoftmax_default_axis",
|
||||
"test_maxpool_2d_dilations",
|
||||
"test_maxpool_2d_same_lower",
|
||||
|
||||
@ -405,10 +405,10 @@ enum ConnectedComponentsTypes {
|
||||
|
||||
//! connected components algorithm
|
||||
enum ConnectedComponentsAlgorithmsTypes {
|
||||
CCL_DEFAULT = -1, //!< BBDT @cite Grana2010 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both BBDT and SAUF.
|
||||
CCL_DEFAULT = -1, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity.
|
||||
CCL_WU = 0, //!< SAUF @cite Wu2009 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for SAUF.
|
||||
CCL_GRANA = 1, //!< BBDT @cite Grana2010 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both BBDT and SAUF.
|
||||
CCL_BOLELLI = 2, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity.
|
||||
CCL_BOLELLI = 2, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both Spaghetti and Spaghetti4C.
|
||||
CCL_SAUF = 3, //!< Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU).
|
||||
CCL_BBDT = 4, //!< Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA).
|
||||
CCL_SPAGHETTI = 5, //!< Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI).
|
||||
@ -3858,9 +3858,10 @@ image with 4 or 8 way connectivity - returns N, the total number of labels [0, N
|
||||
represents the background label. ltype specifies the output label image type, an important
|
||||
consideration based on the total number of labels or alternatively the total number of pixels in
|
||||
the source image. ccltype specifies the connected components labeling algorithm to use, currently
|
||||
Grana (BBDT) and Wu's (SAUF) @cite Wu2009 algorithms are supported, see the #ConnectedComponentsAlgorithmsTypes
|
||||
for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not.
|
||||
This function uses parallel version of both Grana and Wu's algorithms if at least one allowed
|
||||
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
|
||||
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
|
||||
a row major ordering of labels while Spaghetti and BBDT do not.
|
||||
This function uses parallel version of the algorithms if at least one allowed
|
||||
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
|
||||
|
||||
@param image the 8-bit single-channel image to be labeled
|
||||
@ -3890,9 +3891,10 @@ image with 4 or 8 way connectivity - returns N, the total number of labels [0, N
|
||||
represents the background label. ltype specifies the output label image type, an important
|
||||
consideration based on the total number of labels or alternatively the total number of pixels in
|
||||
the source image. ccltype specifies the connected components labeling algorithm to use, currently
|
||||
Grana's (BBDT) and Wu's (SAUF) @cite Wu2009 algorithms are supported, see the #ConnectedComponentsAlgorithmsTypes
|
||||
for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not.
|
||||
This function uses parallel version of both Grana and Wu's algorithms (statistics included) if at least one allowed
|
||||
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
|
||||
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
|
||||
a row major ordering of labels while Spaghetti and BBDT do not.
|
||||
This function uses parallel version of the algorithms (statistics included) if at least one allowed
|
||||
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
|
||||
|
||||
@param image the 8-bit single-channel image to be labeled
|
||||
|
||||
@ -2979,9 +2979,9 @@ struct RGB2Luvfloat
|
||||
for( ; i < n; i++, src += scn, dst += 3 )
|
||||
{
|
||||
float R = src[0], G = src[1], B = src[2];
|
||||
R = std::min(std::max(R, 0.f), 1.f);
|
||||
G = std::min(std::max(G, 0.f), 1.f);
|
||||
B = std::min(std::max(B, 0.f), 1.f);
|
||||
R = clip(R);
|
||||
G = clip(G);
|
||||
B = clip(B);
|
||||
if( gammaTab )
|
||||
{
|
||||
R = splineInterpolate(R*gscale, gammaTab, GAMMA_TAB_SIZE);
|
||||
@ -3205,9 +3205,9 @@ struct Luv2RGBfloat
|
||||
float G = X*C3 + Y*C4 + Z*C5;
|
||||
float B = X*C6 + Y*C7 + Z*C8;
|
||||
|
||||
R = std::min(std::max(R, 0.f), 1.f);
|
||||
G = std::min(std::max(G, 0.f), 1.f);
|
||||
B = std::min(std::max(B, 0.f), 1.f);
|
||||
R = clip(R);
|
||||
G = clip(G);
|
||||
B = clip(B);
|
||||
|
||||
if( gammaTab )
|
||||
{
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -757,16 +757,14 @@ thresh_32f( const Mat& _src, Mat& _dst, float thresh, float maxval, int type )
|
||||
}
|
||||
setIppErrorStatus();
|
||||
break;
|
||||
#if 0 // details: https://github.com/opencv/opencv/pull/16085
|
||||
case THRESH_TOZERO:
|
||||
if (0 <= CV_INSTRUMENT_FUN_IPP(ippiThreshold_LTVal_32f_C1R, src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh + FLT_EPSILON, 0))
|
||||
if (0 <= CV_INSTRUMENT_FUN_IPP(ippiThreshold_LTVal_32f_C1R, src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, nextafterf(thresh, std::numeric_limits<float>::infinity()), 0))
|
||||
{
|
||||
CV_IMPL_ADD(CV_IMPL_IPP);
|
||||
return;
|
||||
}
|
||||
setIppErrorStatus();
|
||||
break;
|
||||
#endif
|
||||
case THRESH_TOZERO_INV:
|
||||
if (0 <= CV_INSTRUMENT_FUN_IPP(ippiThreshold_GTVal_32f_C1R, src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh, 0))
|
||||
{
|
||||
|
||||
@ -3203,6 +3203,8 @@ TEST(ImgProc_RGB2Lab, NaN_21111)
|
||||
src(0, 1) = src(0, 28) = src(0, 82) = src(0, 109) = cv::Vec3f(0, kNaN, 0);
|
||||
src(0, 2) = src(0, 29) = src(0, 83) = src(0, 110) = cv::Vec3f(kNaN, 0, 0);
|
||||
EXPECT_NO_THROW(cvtColor(src, dst, COLOR_RGB2Lab));
|
||||
EXPECT_NO_THROW(cvtColor(src, dst, COLOR_RGB2Luv));
|
||||
EXPECT_NO_THROW(cvtColor(src, dst, COLOR_Luv2RGB));
|
||||
|
||||
#if 0 // no NaN propagation guarantee
|
||||
for (int i = 0; i < 20; ++i)
|
||||
|
||||
@ -42,7 +42,8 @@
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
namespace opencv_test {
|
||||
namespace {
|
||||
|
||||
class CV_ConnectedComponentsTest : public cvtest::BaseTest
|
||||
{
|
||||
@ -61,10 +62,10 @@ void normalizeLabels(Mat1i& imgLabels, int iNumLabels) {
|
||||
vector<int> vecNewLabels(iNumLabels + 1, 0);
|
||||
int iMaxNewLabel = 0;
|
||||
|
||||
for (int r = 0; r<imgLabels.rows; ++r) {
|
||||
for (int c = 0; c<imgLabels.cols; ++c) {
|
||||
for (int r = 0; r < imgLabels.rows; ++r) {
|
||||
for (int c = 0; c < imgLabels.cols; ++c) {
|
||||
int iCurLabel = imgLabels(r, c);
|
||||
if (iCurLabel>0) {
|
||||
if (iCurLabel > 0) {
|
||||
if (vecNewLabels[iCurLabel] == 0) {
|
||||
vecNewLabels[iCurLabel] = ++iMaxNewLabel;
|
||||
}
|
||||
@ -74,7 +75,7 @@ void normalizeLabels(Mat1i& imgLabels, int iNumLabels) {
|
||||
}
|
||||
}
|
||||
|
||||
void CV_ConnectedComponentsTest::run( int /* start_from */)
|
||||
void CV_ConnectedComponentsTest::run(int /* start_from */)
|
||||
{
|
||||
|
||||
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
||||
@ -91,7 +92,7 @@ void CV_ConnectedComponentsTest::run( int /* start_from */)
|
||||
|
||||
Mat bw = orig > 128;
|
||||
|
||||
for (uint cclt = 0; cclt < sizeof(ccltype)/sizeof(int); ++cclt)
|
||||
for (uint cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt)
|
||||
{
|
||||
|
||||
Mat1i labelImage;
|
||||
@ -100,11 +101,11 @@ void CV_ConnectedComponentsTest::run( int /* start_from */)
|
||||
normalizeLabels(labelImage, nLabels);
|
||||
|
||||
// Validate test results
|
||||
for (int r = 0; r < labelImage.rows; ++r){
|
||||
for (int c = 0; c < labelImage.cols; ++c){
|
||||
for (int r = 0; r < labelImage.rows; ++r) {
|
||||
for (int c = 0; c < labelImage.cols; ++c) {
|
||||
int l = labelImage.at<int>(r, c);
|
||||
bool pass = l >= 0 && l <= nLabels;
|
||||
if (!pass){
|
||||
if (!pass) {
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||||
return;
|
||||
}
|
||||
@ -166,12 +167,12 @@ static cv::Mat createCrashMat(int numThreads) {
|
||||
for (int s = stripeRange.start; s < stripeRange.end; s++) {
|
||||
cv::Range sr(s, s + 1);
|
||||
cv::Range r;
|
||||
r.start = (int) (wholeRange.start +
|
||||
((uint64) sr.start * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
|
||||
r.start = (int)(wholeRange.start +
|
||||
((uint64)sr.start * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
|
||||
r.end = sr.end >= nstripes ?
|
||||
wholeRange.end :
|
||||
(int) (wholeRange.start +
|
||||
((uint64) sr.end * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
|
||||
wholeRange.end :
|
||||
(int)(wholeRange.start +
|
||||
((uint64)sr.end * (wholeRange.end - wholeRange.start) + nstripes / 2) / nstripes);
|
||||
|
||||
if (r.start > 0 && r.start % 2 == 1 && r.end % 2 == 0 && r.end >= r.start + 2) {
|
||||
bugRange = r;
|
||||
@ -203,7 +204,7 @@ static cv::Mat createCrashMat(int numThreads) {
|
||||
TEST(Imgproc_ConnectedComponents, parallel_wu_labels)
|
||||
{
|
||||
cv::Mat mat = createCrashMat(cv::getNumThreads());
|
||||
if(mat.empty()) {
|
||||
if (mat.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -213,10 +214,10 @@ TEST(Imgproc_ConnectedComponents, parallel_wu_labels)
|
||||
cv::Mat stats;
|
||||
cv::Mat centroids;
|
||||
int nb = 0;
|
||||
EXPECT_NO_THROW( nb = cv::connectedComponentsWithStats(mat, labels, stats, centroids, 8, CV_32S, cv::CCL_WU) );
|
||||
EXPECT_NO_THROW(nb = cv::connectedComponentsWithStats(mat, labels, stats, centroids, 8, CV_32S, cv::CCL_WU));
|
||||
|
||||
int area = 0;
|
||||
for(int i=1; i<nb; ++i) {
|
||||
for (int i = 1; i < nb; ++i) {
|
||||
area += stats.at<int32_t>(i, cv::CC_STAT_AREA);
|
||||
}
|
||||
|
||||
@ -229,7 +230,7 @@ TEST(Imgproc_ConnectedComponents, missing_background_pixels)
|
||||
cv::Mat labels;
|
||||
cv::Mat stats;
|
||||
cv::Mat centroids;
|
||||
EXPECT_NO_THROW(cv::connectedComponentsWithStats(m, labels, stats, centroids, 8, CV_32S, cv::CCL_WU) );
|
||||
EXPECT_NO_THROW(cv::connectedComponentsWithStats(m, labels, stats, centroids, 8, CV_32S, cv::CCL_WU));
|
||||
EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_WIDTH), 0);
|
||||
EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_HEIGHT), 0);
|
||||
EXPECT_EQ(stats.at<int32_t>(0, cv::CC_STAT_LEFT), -1);
|
||||
@ -241,21 +242,21 @@ TEST(Imgproc_ConnectedComponents, spaghetti_bbdt_sauf_stats)
|
||||
{
|
||||
cv::Mat1b img(16, 16);
|
||||
img << 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
|
||||
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
|
||||
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
|
||||
0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
|
||||
0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
|
||||
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
|
||||
0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
|
||||
|
||||
cv::Mat1i labels;
|
||||
cv::Mat1i stats;
|
||||
@ -357,4 +358,436 @@ TEST(Imgproc_ConnectedComponents, spaghetti_bbdt_sauf_stats)
|
||||
}
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
TEST(Imgproc_ConnectedComponents, chessboard_even)
|
||||
{
|
||||
cv::Size size(16, 16);
|
||||
cv::Mat1b input(size);
|
||||
cv::Mat1i output_8c(size);
|
||||
cv::Mat1i output_4c(size);
|
||||
|
||||
// Chessboard image with even number of rows and cols
|
||||
// Note that this is the maximum number of labels for 4-way connectivity
|
||||
{
|
||||
input <<
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
||||
|
||||
output_8c <<
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
||||
|
||||
output_4c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,
|
||||
0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16,
|
||||
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0,
|
||||
0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32,
|
||||
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0,
|
||||
0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48,
|
||||
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0,
|
||||
0, 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64,
|
||||
65, 0, 66, 0, 67, 0, 68, 0, 69, 0, 70, 0, 71, 0, 72, 0,
|
||||
0, 73, 0, 74, 0, 75, 0, 76, 0, 77, 0, 78, 0, 79, 0, 80,
|
||||
81, 0, 82, 0, 83, 0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0,
|
||||
0, 89, 0, 90, 0, 91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96,
|
||||
97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0,
|
||||
0, 105, 0, 106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112,
|
||||
113, 0, 114, 0, 115, 0, 116, 0, 117, 0, 118, 0, 119, 0, 120, 0,
|
||||
0, 121, 0, 122, 0, 123, 0, 124, 0, 125, 0, 126, 0, 127, 0, 128;
|
||||
}
|
||||
|
||||
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
||||
|
||||
cv::Mat1i labels;
|
||||
cv::Mat diff;
|
||||
int nLabels = 0;
|
||||
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_8c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_4c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
TEST(Imgproc_ConnectedComponents, chessboard_odd)
|
||||
{
|
||||
cv::Size size(15, 15);
|
||||
cv::Mat1b input(size);
|
||||
cv::Mat1i output_8c(size);
|
||||
cv::Mat1i output_4c(size);
|
||||
|
||||
// Chessboard image with odd number of rows and cols
|
||||
// Note that this is the maximum number of labels for 4-way connectivity
|
||||
{
|
||||
input <<
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
||||
|
||||
output_8c <<
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
||||
|
||||
output_4c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
|
||||
0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0,
|
||||
16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23,
|
||||
0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0,
|
||||
31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38,
|
||||
0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0,
|
||||
46, 0, 47, 0, 48, 0, 49, 0, 50, 0, 51, 0, 52, 0, 53,
|
||||
0, 54, 0, 55, 0, 56, 0, 57, 0, 58, 0, 59, 0, 60, 0,
|
||||
61, 0, 62, 0, 63, 0, 64, 0, 65, 0, 66, 0, 67, 0, 68,
|
||||
0, 69, 0, 70, 0, 71, 0, 72, 0, 73, 0, 74, 0, 75, 0,
|
||||
76, 0, 77, 0, 78, 0, 79, 0, 80, 0, 81, 0, 82, 0, 83,
|
||||
0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0, 89, 0, 90, 0,
|
||||
91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96, 0, 97, 0, 98,
|
||||
0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0, 105, 0,
|
||||
106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112, 0, 113;
|
||||
}
|
||||
|
||||
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
||||
|
||||
cv::Mat1i labels;
|
||||
cv::Mat diff;
|
||||
int nLabels = 0;
|
||||
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_8c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_4c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
TEST(Imgproc_ConnectedComponents, maxlabels_8conn_even)
|
||||
{
|
||||
cv::Size size(16, 16);
|
||||
cv::Mat1b input(size);
|
||||
cv::Mat1i output_8c(size);
|
||||
cv::Mat1i output_4c(size);
|
||||
|
||||
{
|
||||
input <<
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
||||
|
||||
output_8c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
||||
|
||||
output_4c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
|
||||
}
|
||||
|
||||
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
||||
|
||||
cv::Mat1i labels;
|
||||
cv::Mat diff;
|
||||
int nLabels = 0;
|
||||
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_8c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_4c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
TEST(Imgproc_ConnectedComponents, maxlabels_8conn_odd)
|
||||
{
|
||||
cv::Size size(15, 15);
|
||||
cv::Mat1b input(size);
|
||||
cv::Mat1i output_8c(size);
|
||||
cv::Mat1i output_4c(size);
|
||||
|
||||
{
|
||||
input <<
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
||||
|
||||
output_8c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64;
|
||||
|
||||
output_4c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64;
|
||||
}
|
||||
|
||||
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
||||
|
||||
cv::Mat1i labels;
|
||||
cv::Mat diff;
|
||||
int nLabels = 0;
|
||||
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_8c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_4c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
TEST(Imgproc_ConnectedComponents, single_row)
|
||||
{
|
||||
cv::Size size(1, 15);
|
||||
cv::Mat1b input(size);
|
||||
cv::Mat1i output_8c(size);
|
||||
cv::Mat1i output_4c(size);
|
||||
|
||||
{
|
||||
input <<
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
||||
|
||||
|
||||
output_8c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
|
||||
|
||||
|
||||
output_4c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
|
||||
|
||||
}
|
||||
|
||||
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
||||
|
||||
cv::Mat1i labels;
|
||||
cv::Mat diff;
|
||||
int nLabels = 0;
|
||||
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_8c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_4c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
TEST(Imgproc_ConnectedComponents, single_column)
|
||||
{
|
||||
cv::Size size(15, 1);
|
||||
cv::Mat1b input(size);
|
||||
cv::Mat1i output_8c(size);
|
||||
cv::Mat1i output_4c(size);
|
||||
|
||||
{
|
||||
input <<
|
||||
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
|
||||
|
||||
|
||||
output_8c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
|
||||
|
||||
|
||||
output_4c <<
|
||||
1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8;
|
||||
|
||||
}
|
||||
|
||||
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
|
||||
|
||||
cv::Mat1i labels;
|
||||
cv::Mat diff;
|
||||
int nLabels = 0;
|
||||
for (size_t cclt = 0; cclt < sizeof(ccltype) / sizeof(int); ++cclt) {
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 8, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_8c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
|
||||
|
||||
EXPECT_NO_THROW(nLabels = cv::connectedComponents(input, labels, 4, CV_32S, ccltype[cclt]));
|
||||
normalizeLabels(labels, nLabels);
|
||||
|
||||
diff = labels != output_4c;
|
||||
EXPECT_EQ(cv::countNonZero(diff), 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
} // namespace
|
||||
|
||||
@ -511,4 +511,34 @@ TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_16085)
|
||||
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
||||
}
|
||||
|
||||
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258)
|
||||
{
|
||||
Size sz(16, 16);
|
||||
float val = nextafterf(16.0f, 0.0f); // 0x417fffff, all bits in mantissa are 1
|
||||
Mat input(sz, CV_32F, Scalar::all(val));
|
||||
Mat result;
|
||||
cv::threshold(input, result, val, 0.0, THRESH_TOZERO);
|
||||
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
||||
}
|
||||
|
||||
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258_Min)
|
||||
{
|
||||
Size sz(16, 16);
|
||||
float min_val = -std::numeric_limits<float>::max();
|
||||
Mat input(sz, CV_32F, Scalar::all(min_val));
|
||||
Mat result;
|
||||
cv::threshold(input, result, min_val, 0.0, THRESH_TOZERO);
|
||||
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
||||
}
|
||||
|
||||
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258_Max)
|
||||
{
|
||||
Size sz(16, 16);
|
||||
float max_val = std::numeric_limits<float>::max();
|
||||
Mat input(sz, CV_32F, Scalar::all(max_val));
|
||||
Mat result;
|
||||
cv::threshold(input, result, max_val, 0.0, THRESH_TOZERO);
|
||||
EXPECT_EQ(0, cv::norm(result, NORM_INF));
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
||||
Loading…
Reference in New Issue
Block a user