diff --git a/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.rst b/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.rst index abf0411775..e24d478c16 100644 --- a/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.rst +++ b/doc/py_tutorials/py_calib3d/py_calibration/py_calibration.rst @@ -93,9 +93,8 @@ Once we find the corners, we can increase their accuracy using **cv2.cornerSubPi objp = np.zeros((6*7,3), np.float32) objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2) - # Arrays to store object points and image points from all the images. + # Arrays to store object points objpoints = [] # 3d point in real world space - imgpoints = [] # 2d points in image plane. images = glob.glob('*.jpg') @@ -110,16 +109,16 @@ Once we find the corners, we can increase their accuracy using **cv2.cornerSubPi if ret == True: objpoints.append(objp) - corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) - imgpoints.append(corners2) + cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) # Draw and display the corners - img = cv2.drawChessboardCorners(img, (7,6), corners2,ret) + cv2.drawChessboardCorners(img, (7,6), corners,ret) cv2.imshow('img',img) cv2.waitKey(500) cv2.destroyAllWindows() + One image with pattern drawn on it is shown below: .. image:: images/calib_pattern.jpg