[move sift.cpp] Multithreading findScaleSpaceExtremaComputer. Sort the keypoints afterwards to make the output stable
original commit: 6be2945abb
This commit is contained in:
parent
4b64955a12
commit
b6d636214e
@ -534,31 +534,53 @@ static bool adjustLocalExtrema( const std::vector<Mat>& dog_pyr, KeyPoint& kpt,
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Detects features at extrema in DoG scale space. Bad features are discarded
|
||||
// based on contrast and ratio of principal curvatures.
|
||||
void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& keypoints ) const
|
||||
class findScaleSpaceExtremaComputer : public ParallelLoopBody
|
||||
{
|
||||
int nOctaves = (int)gauss_pyr.size()/(nOctaveLayers + 3);
|
||||
int threshold = cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE);
|
||||
const int n = SIFT_ORI_HIST_BINS;
|
||||
float hist[n];
|
||||
KeyPoint kpt;
|
||||
public:
|
||||
findScaleSpaceExtremaComputer(
|
||||
int _o,
|
||||
int _i,
|
||||
int _threshold,
|
||||
int _idx,
|
||||
int _step,
|
||||
int _cols,
|
||||
int _nOctaveLayers,
|
||||
double _contrastThreshold,
|
||||
double _edgeThreshold,
|
||||
double _sigma,
|
||||
const std::vector<Mat>& _gauss_pyr,
|
||||
const std::vector<Mat>& _dog_pyr,
|
||||
std::vector<KeyPoint>& _keypoints,
|
||||
Mutex &_mutex)
|
||||
|
||||
keypoints.clear();
|
||||
|
||||
for( int o = 0; o < nOctaves; o++ )
|
||||
for( int i = 1; i <= nOctaveLayers; i++ )
|
||||
: o(_o),
|
||||
i(_i),
|
||||
threshold(_threshold),
|
||||
idx(_idx),
|
||||
step(_step),
|
||||
cols(_cols),
|
||||
nOctaveLayers(_nOctaveLayers),
|
||||
contrastThreshold(_contrastThreshold),
|
||||
edgeThreshold(_edgeThreshold),
|
||||
sigma(_sigma),
|
||||
gauss_pyr(_gauss_pyr),
|
||||
dog_pyr(_dog_pyr),
|
||||
keypoints(_keypoints),
|
||||
mutex(_mutex) { }
|
||||
void operator()( const cv::Range& range ) const
|
||||
{
|
||||
int idx = o*(nOctaveLayers+2)+i;
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
|
||||
static const int n = SIFT_ORI_HIST_BINS;
|
||||
float hist[n];
|
||||
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const Mat& prev = dog_pyr[idx-1];
|
||||
const Mat& next = dog_pyr[idx+1];
|
||||
int step = (int)img.step1();
|
||||
int rows = img.rows, cols = img.cols;
|
||||
|
||||
for( int r = SIFT_IMG_BORDER; r < rows-SIFT_IMG_BORDER; r++)
|
||||
KeyPoint kpt;
|
||||
for( int r = begin; r < end; r++)
|
||||
{
|
||||
const sift_wt* currptr = img.ptr<sift_wt>(r);
|
||||
const sift_wt* prevptr = prev.ptr<sift_wt>(r);
|
||||
@ -613,6 +635,8 @@ void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const
|
||||
kpt.angle = 360.f - (float)((360.f/n) * bin);
|
||||
if(std::abs(kpt.angle - 360.f) < FLT_EPSILON)
|
||||
kpt.angle = 0.f;
|
||||
{
|
||||
AutoLock autoLock(mutex);
|
||||
keypoints.push_back(kpt);
|
||||
}
|
||||
}
|
||||
@ -620,6 +644,50 @@ void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
private:
|
||||
int o, i;
|
||||
int threshold;
|
||||
int idx, step, cols;
|
||||
int nOctaveLayers;
|
||||
double contrastThreshold;
|
||||
double edgeThreshold;
|
||||
double sigma;
|
||||
const std::vector<Mat>& gauss_pyr;
|
||||
const std::vector<Mat>& dog_pyr;
|
||||
std::vector<KeyPoint>& keypoints;
|
||||
Mutex &mutex;
|
||||
};
|
||||
|
||||
//
|
||||
// Detects features at extrema in DoG scale space. Bad features are discarded
|
||||
// based on contrast and ratio of principal curvatures.
|
||||
void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& keypoints ) const
|
||||
{
|
||||
const int nOctaves = (int)gauss_pyr.size()/(nOctaveLayers + 3);
|
||||
const int threshold = cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE);
|
||||
|
||||
keypoints.clear();
|
||||
Mutex mutex;
|
||||
|
||||
for( int o = 0; o < nOctaves; o++ )
|
||||
for( int i = 1; i <= nOctaveLayers; i++ )
|
||||
{
|
||||
const int idx = o*(nOctaveLayers+2)+i;
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const int step = (int)img.step1();
|
||||
const int rows = img.rows, cols = img.cols;
|
||||
|
||||
parallel_for_(Range(SIFT_IMG_BORDER, rows-SIFT_IMG_BORDER),
|
||||
findScaleSpaceExtremaComputer(
|
||||
o, i, threshold, idx, step, cols,
|
||||
nOctaveLayers,
|
||||
contrastThreshold,
|
||||
edgeThreshold,
|
||||
sigma,
|
||||
gauss_pyr, dog_pyr, keypoints, mutex));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -1046,7 +1114,7 @@ void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask,
|
||||
{
|
||||
//t = (double)getTickCount();
|
||||
findScaleSpaceExtrema(gpyr, dogpyr, keypoints);
|
||||
KeyPointsFilter::removeDuplicated( keypoints );
|
||||
KeyPointsFilter::removeDuplicatedSorted( keypoints );
|
||||
|
||||
if( nfeatures > 0 )
|
||||
KeyPointsFilter::retainBest(keypoints, nfeatures);
|
||||
|
||||
Loading…
Reference in New Issue
Block a user