diff --git a/samples/dnn/human_parsing.py b/samples/dnn/human_parsing.py index 43c495200a..74f644af29 100644 --- a/samples/dnn/human_parsing.py +++ b/samples/dnn/human_parsing.py @@ -3,8 +3,7 @@ import numpy as np import argparse -backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, - cv.dnn.DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, cv.dnn.DNN_BACKEND_OPENCV) +backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV) targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD) parser = argparse.ArgumentParser(description='Use this script to run human parsing using JPPNet', @@ -14,7 +13,6 @@ parser.add_argument('--model', '-m', required=True, help='Path to pb model.') parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, help="Choose one of computation backends: " "%d: automatically (by default), " - "%d: Halide language (http://halide-lang.org/), " "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "%d: OpenCV implementation" % backends) parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, @@ -23,6 +21,7 @@ parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, '%d: OpenCL, ' '%d: OpenCL fp16 (half-float precision), ' '%d: VPU' % targets) +args, _ = parser.parse_known_args() # To get pre-trained model download https://drive.google.com/file/d/1BFVXgeln-bek8TCbRjN6utPAgRE0LJZg/view # For correct convert .meta to .pb model download original repository https://github.com/Engineering-Course/LIP_JPPNet @@ -165,7 +164,6 @@ def parse_human(image_path, model_path, backend, target): if __name__ == '__main__': - args, _ = parser.parse_known_args() output = parse_human(args.input, args.model, args.backend, args.target) winName = 'Deep learning human parsing in OpenCV' cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)