diff --git a/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst b/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst index 7eb16235c5..1700a40913 100644 --- a/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst +++ b/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst @@ -522,13 +522,13 @@ solvePnP ------------ Finds an object pose from 3D-2D point correspondences. -.. ocv:function:: void solvePnP( InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false ) +.. ocv:function:: void solvePnP( InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false, int flags = CV_ITERATIVE ) -.. ocv:pyfunction:: cv2.solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess]]]) -> rvec, tvec +.. ocv:pyfunction:: cv2.solvePnP( objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, flags]]]] ) -> rvec, tvec -.. ocv:cfunction:: void cvFindExtrinsicCameraParams2( const CvMat* objectPoints, const CvMat* imagePoints, const CvMat* cameraMatrix, const CvMat* distCoeffs, CvMat* rvec, CvMat* tvec, int useExtrinsicGuess=0) - -.. ocv:pyoldfunction:: cv.FindExtrinsicCameraParams2(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess=0)-> None +.. ocv:cfunction:: void cvFindExtrinsicCameraParams2( const CvMat* objectPoints, const CvMat* imagePoints, const CvMat* cameraMatrix, const CvMat* distCoeffs, CvMat* rvec, CvMat* tvec, int useExtrinsicGuess=0 ) + +.. ocv:pyoldfunction:: cv.FindExtrinsicCameraParams2( objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, useExtrinsicGuess=0 )-> None :param objectPoints: Array of object points in the object coordinate space, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel, where N is the number of points. ``vector`` can be also passed here. @@ -544,8 +544,13 @@ Finds an object pose from 3D-2D point correspondences. :param useExtrinsicGuess: If true (1), the function uses the provided ``rvec`` and ``tvec`` values as initial approximations of the rotation and translation vectors, respectively, and further optimizes them. -The function estimates the object pose given a set of object points, their corresponding image projections, as well as the camera matrix and the distortion coefficients. This function finds such a pose that minimizes reprojection error, that is, the sum of squared distances between the observed projections ``imagePoints`` and the projected (using -:ocv:func:`projectPoints` ) ``objectPoints`` . + :param flags: Method for solving a PnP problem: + + * **CV_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In this case the function finds such a pose that minimizes reprojection error, that is the sum of squared distances between the observed projections ``imagePoints`` and the projected (using :ocv:func:`projectPoints` ) ``objectPoints`` . + * **CV_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang "Complete Solution Classification for the Perspective-Three-Point Problem". In this case the function requires exactly four object and image points. + * **CV_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation". + +The function estimates the object pose given a set of object points, their corresponding image projections, as well as the camera matrix and the distortion coefficients. @@ -553,9 +558,9 @@ solvePnPRansac ------------------ Finds an object pose from 3D-2D point correspondences using the RANSAC scheme. -.. ocv:function:: void solvePnPRansac( InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false, int iterationsCount = 100, float reprojectionError = 8.0, int minInliersCount = 100, OutputArray inliers = noArray() ) +.. ocv:function:: void solvePnPRansac( InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess=false, int iterationsCount = 100, float reprojectionError = 8.0, int minInliersCount = 100, OutputArray inliers = noArray(), int flags = CV_ITERATIVE ) -.. ocv:pyfunction:: cv2.solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, iterationsCount[, reprojectionError[, minInliersCount[, inliers]]]]]]]) -> rvec, tvec, inliers +.. ocv:pyfunction:: cv2.solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, iterationsCount[, reprojectionError[, minInliersCount[, inliers[, flags]]]]]]]]) -> rvec, tvec, inliers :param objectPoints: Array of object points in the object coordinate space, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel, where N is the number of points. ``vector`` can be also passed here. @@ -579,6 +584,8 @@ Finds an object pose from 3D-2D point correspondences using the RANSAC scheme. :param inliers: Output vector that contains indices of inliers in ``objectPoints`` and ``imagePoints`` . + :param flags: Method for solving a PnP problem (see :ocv:func:`solvePnP` ). + The function estimates an object pose given a set of object points, their corresponding image projections, as well as the camera matrix and the distortion coefficients. This function finds such a pose that minimizes reprojection error, that is, the sum of squared distances between the observed projections ``imagePoints`` and the projected (using :ocv:func:`projectPoints` ) ``objectPoints``. The use of RANSAC makes the function resistant to outliers.