diff --git a/modules/ml/include/opencv2/ml.hpp b/modules/ml/include/opencv2/ml.hpp index aca013e090..42b90d22d9 100644 --- a/modules/ml/include/opencv2/ml.hpp +++ b/modules/ml/include/opencv2/ml.hpp @@ -518,6 +518,8 @@ public: virtual CvSVMParams get_params() const { return params; } CV_WRAP virtual void clear(); + virtual const CvSVMDecisionFunc* get_decision_function() const { return decision_func; } + static CvParamGrid get_default_grid( int param_id ); virtual void write( CvFileStorage* storage, const char* name ) const; diff --git a/modules/ml/src/svm.cpp b/modules/ml/src/svm.cpp index 84de4cd797..f2d3c33ab8 100644 --- a/modules/ml/src/svm.cpp +++ b/modules/ml/src/svm.cpp @@ -1245,7 +1245,6 @@ const float* CvSVM::get_support_vector(int i) const return sv && (unsigned)i < (unsigned)sv_total ? sv[i] : 0; } - bool CvSVM::set_params( const CvSVMParams& _params ) { bool ok = false; diff --git a/samples/cpp/train_HOG.cpp b/samples/cpp/train_HOG.cpp new file mode 100644 index 0000000000..3f21206a18 --- /dev/null +++ b/samples/cpp/train_HOG.cpp @@ -0,0 +1,461 @@ +#include + +#include +#include +#include +#include + +#include + +using namespace cv; +using namespace std; + +void get_svm_detector(const SVM& svm, vector< float > & hog_detector ); +void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData ); +void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst ); +void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size ); +Mat get_hogdescriptor_visu(Mat& color_origImg, vector& descriptorValues, const Size & size ); +void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size ); +void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels ); +void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color ); +void test_it( const Size & size ); + +void get_svm_detector(const SVM& svm, vector< float > & hog_detector ) +{ + // get the number of variables + const int var_all = svm.get_var_count(); + // get the number of support vectors + const int sv_total = svm.get_support_vector_count(); + // get the decision function + const CvSVMDecisionFunc* decision_func = svm.get_decision_function(); + // get the support vectors + const float** sv = new const float*[ sv_total ]; + for( int i = 0 ; i < sv_total ; ++i ) + sv[ i ] = svm.get_support_vector(i); + + CV_Assert( var_all > 0 && + sv_total > 0 && + decision_func != 0 && + decision_func->alpha != 0 && + decision_func->sv_count == sv_total ); + + float svi = 0.f; + + hog_detector.clear(); //clear stuff in vector. + hog_detector.reserve( var_all + 1 ); //reserve place for memory efficiency. + + /** + * hog_detector^i = \sum_j support_vector_j^i * \alpha_j + * hog_detector^dim = -\rho + */ + for( int i = 0 ; i < var_all ; ++i ) + { + svi = 0.f; + for( int j = 0 ; j < sv_total ; ++j ) + { + if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML. + svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] ); + else + svi += (float)( sv[j][i] * decision_func->alpha[ j ] ); + } + hog_detector.push_back( svi ); + } + hog_detector.push_back( (float)-decision_func->rho ); + + delete[] sv; +} + + +/* +* Convert training/testing set to be used by OpenCV Machine Learning algorithms. +* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1. +* Transposition of samples are made if needed. +*/ +void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData ) +{ + //--Convert data + const int rows = (int)train_samples.size(); + const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows ); + cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed + trainData = cv::Mat(rows, cols, CV_32FC1 ); + vector< Mat >::const_iterator itr = train_samples.begin(); + vector< Mat >::const_iterator end = train_samples.end(); + for( int i = 0 ; itr != end ; ++itr, ++i ) + { + CV_Assert( itr->cols == 1 || + itr->rows == 1 ); + if( itr->cols == 1 ) + { + transpose( *(itr), tmp ); + tmp.copyTo( trainData.row( i ) ); + } + else if( itr->rows == 1 ) + { + itr->copyTo( trainData.row( i ) ); + } + } +} + +void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst ) +{ + string line; + ifstream file; + + file.open( (prefix+filename).c_str() ); + if( !file.is_open() ) + { + cerr << "Unable to open the list of images from " << filename << " filename." << endl; + exit( -1 ); + } + + bool end_of_parsing = false; + while( !end_of_parsing ) + { + getline( file, line ); + if( line == "" ) // no more file to read + { + end_of_parsing = true; + break; + } + Mat img = imread( (prefix+line).c_str() ); // load the image + if( !img.data ) // invalid image, just skip it. + continue; +#ifdef _DEBUG + imshow( "image", img ); + waitKey( 10 ); +#endif + img_lst.push_back( img.clone() ); + } +} + +void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size ) +{ + Rect box; + box.width = size.width; + box.height = size.height; + + const int size_x = box.width; + const int size_y = box.height; + + srand( (unsigned int)time( NULL ) ); + + vector< Mat >::const_iterator img = full_neg_lst.begin(); + vector< Mat >::const_iterator end = full_neg_lst.end(); + for( ; img != end ; ++img ) + { + box.x = rand() % (img->cols - size_x); + box.y = rand() % (img->rows - size_y); + Mat roi = (*img)(box); + neg_lst.push_back( roi.clone() ); +#ifdef _DEBUG + imshow( "img", roi.clone() ); + waitKey( 10 ); +#endif + } +} + +// From http://www.juergenwiki.de/work/wiki/doku.php?id=public:hog_descriptor_computation_and_visualization +Mat get_hogdescriptor_visu(Mat& color_origImg, vector& descriptorValues, const Size & size ) +{ + const int DIMX = size.width; + const int DIMY = size.height; + float zoomFac = 3; + Mat visu; + resize(color_origImg, visu, Size( (int)(color_origImg.cols*zoomFac), (int)(color_origImg.rows*zoomFac) ) ); + + int cellSize = 8; + int gradientBinSize = 9; + float radRangeForOneBin = (float)(CV_PI/(float)gradientBinSize); // dividing 180° into 9 bins, how large (in rad) is one bin? + + // prepare data structure: 9 orientation / gradient strenghts for each cell + int cells_in_x_dir = DIMX / cellSize; + int cells_in_y_dir = DIMY / cellSize; + float*** gradientStrengths = new float**[cells_in_y_dir]; + int** cellUpdateCounter = new int*[cells_in_y_dir]; + for (int y=0; y & img_lst, vector< Mat > & gradient_lst, const Size & size ) +{ + HOGDescriptor hog; + hog.winSize = size; + Mat gray; + vector< Point > location; + vector< float > descriptors; + + vector< Mat >::const_iterator img = img_lst.begin(); + vector< Mat >::const_iterator end = img_lst.end(); + for( ; img != end ; ++img ) + { + cvtColor( *img, gray, COLOR_BGR2GRAY ); + hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ), location ); + gradient_lst.push_back( Mat( descriptors ).clone() ); +#ifdef _DEBUG + imshow( "gradient", get_hogdescriptor_visu( img->clone(), descriptors, size ) ); + waitKey( 10 ); +#endif + } +} + +void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels ) +{ + SVM svm; + + /* Default values to train SVM */ + SVMParams params; + params.coef0 = 0.0; + params.degree = 3; + params.term_crit.epsilon = 1e-3; + params.gamma = 0; + params.kernel_type = SVM::LINEAR; + params.nu = 0.5; + params.p = 0.1; // for EPSILON_SVR, epsilon in loss function? + params.C = 0.01; // From paper, soft classifier + params.svm_type = SVM::EPS_SVR; // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task + + Mat train_data; + convert_to_ml( gradient_lst, train_data ); + + clog << "Start training..."; + svm.train( train_data, Mat( labels ), Mat(), Mat(), params ); + clog << "...[done]" << endl; + + svm.save( "my_people_detector.yml" ); +} + +void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color ) +{ + if( !locations.empty() ) + { + vector< Rect >::const_iterator loc = locations.begin(); + vector< Rect >::const_iterator end = locations.end(); + for( ; loc != end ; ++loc ) + { + rectangle( img, *loc, color, 2 ); + } + } +} + +void test_it( const Size & size ) +{ + char key = 27; + Scalar reference( 0, 255, 0 ); + Scalar trained( 0, 0, 255 ); + Mat img, draw; + SVM svm; + HOGDescriptor hog; + HOGDescriptor my_hog; + my_hog.winSize = size; + VideoCapture video; + vector< Rect > locations; + + // Load the trained SVM. + svm.load( "my_people_detector.yml" ); + // Set the trained svm to my_hog + vector< float > hog_detector; + get_svm_detector( svm, hog_detector ); + my_hog.setSVMDetector( hog_detector ); + // Set the people detector. + hog.setSVMDetector( hog.getDefaultPeopleDetector() ); + // Open the camera. + video.open(0); + if( !video.isOpened() ) + { + cerr << "Unable to open the device 0" << endl; + exit( -1 ); + } + + bool end_of_process = false; + while( !end_of_process ) + { + video >> img; + if( !img.data ) + break; + + draw = img.clone(); + + locations.clear(); + hog.detectMultiScale( img, locations ); + draw_locations( draw, locations, reference ); + + locations.clear(); + my_hog.detectMultiScale( img, locations ); + draw_locations( draw, locations, trained ); + + imshow( "Video", draw ); + key = (char)waitKey( 10 ); + if( 27 == key ) + end_of_process = true; + } +} + +int main( int argc, char** argv ) +{ + if( argc != 4 ) + { + cout << "Wrong number of parameters." << endl + << "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl + << "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl; + exit( -1 ); + } + vector< Mat > pos_lst; + vector< Mat > full_neg_lst; + vector< Mat > neg_lst; + vector< Mat > gradient_lst; + vector< int > labels; + + load_images( argv[1], argv[2], pos_lst ); + labels.assign( pos_lst.size(), +1 ); + const unsigned int old = (unsigned int)labels.size(); + load_images( argv[3], argv[4], full_neg_lst ); + sample_neg( full_neg_lst, neg_lst, Size( 96,160 ) ); + labels.insert( labels.end(), neg_lst.size(), -1 ); + CV_Assert( old < labels.size() ); + + compute_hog( pos_lst, gradient_lst, Size( 96, 160 ) ); + compute_hog( neg_lst, gradient_lst, Size( 96, 160 ) ); + + train_svm( gradient_lst, labels ); + + test_it( Size( 96, 160 ) ); // change with your parameters + + return 0; +}