#include "test_precomp.hpp" #include #include #define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name #define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > > /// Change this parameter via CMake: cmake -DDATASETS_REPOSITORY_FOLDER= //const static std::string datasets_repository_path = "DATASETS_REPOSITORY_FOLDER"; const static std::string datasets_repository_path = "/home/krylov/data"; namespace FishEye { const static cv::Size imageSize(1280, 800); const static cv::Matx33d K(558.478087865323, 0, 620.458515360843, 0, 560.506767351568, 381.939424848348, 0, 0, 1); const static cv::Vec4d D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371); const static cv::Matx33d R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03, -6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02, -5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01); const static cv::Vec3d T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04); } namespace{ std::string combine(const std::string& _item1, const std::string& _item2) { std::string item1 = _item1, item2 = _item2; std::replace(item1.begin(), item1.end(), '\\', '/'); std::replace(item2.begin(), item2.end(), '\\', '/'); if (item1.empty()) return item2; if (item2.empty()) return item1; char last = item1[item1.size()-1]; return item1 + (last != '/' ? "/" : "") + item2; } std::string combine_format(const std::string& item1, const std::string& item2, ...) { std::string fmt = combine(item1, item2); char buffer[1 << 16]; va_list args; va_start( args, item2 ); vsprintf( buffer, fmt.c_str(), args ); va_end( args ); return std::string(buffer); } void readPoins(std::vector >& objectPoints, std::vector >& imagePoints, const std::string& path, const int n_images, const int n_points) { objectPoints.resize(n_images); imagePoints.resize(n_images); std::vector image(n_points); std::vector object(n_points); std::ifstream ipStream; std::ifstream opStream; for (int image_idx = 0; image_idx < n_images; image_idx++) { std::stringstream ss; ss << image_idx; std::string idxStr = ss.str(); ipStream.open(combine(path, std::string(std::string("x_") + idxStr + std::string(".csv"))).c_str(), std::ifstream::in); opStream.open(combine(path, std::string(std::string("X_") + idxStr + std::string(".csv"))).c_str(), std::ifstream::in); CV_Assert(ipStream.is_open() && opStream.is_open()); for (int point_idx = 0; point_idx < n_points; point_idx++) { double x, y, z; char delim; ipStream >> x >> delim >> y; image[point_idx] = cv::Point2d(x, y); opStream >> x >> delim >> y >> delim >> z; object[point_idx] = cv::Point3d(x, y, z); } ipStream.close(); opStream.close(); imagePoints[image_idx] = image; objectPoints[image_idx] = object; } } void readExtrinsics(const std::string& file, cv::OutputArray _R, cv::OutputArray _T, cv::OutputArray _R1, cv::OutputArray _R2, cv::OutputArray _P1, cv::OutputArray _P2, cv::OutputArray _Q) { cv::FileStorage fs(file, cv::FileStorage::READ); CV_Assert(fs.isOpened()); cv::Mat R, T, R1, R2, P1, P2, Q; fs["R"] >> R; fs["T"] >> T; fs["R1"] >> R1; fs["R2"] >> R2; fs["P1"] >> P1; fs["P2"] >> P2; fs["Q"] >> Q; if (_R.needed()) R.copyTo(_R); if(_T.needed()) T.copyTo(_T); if (_R1.needed()) R1.copyTo(_R1); if (_R2.needed()) R2.copyTo(_R2); if(_P1.needed()) P1.copyTo(_P1); if(_P2.needed()) P2.copyTo(_P2); if(_Q.needed()) Q.copyTo(_Q); } cv::Mat mergeRectification(const cv::Mat& l, const cv::Mat& r) { CV_Assert(l.type() == r.type() && l.size() == r.size()); cv::Mat merged(l.rows, l.cols * 2, l.type()); cv::Mat lpart = merged.colRange(0, l.cols); cv::Mat rpart = merged.colRange(l.cols, merged.cols); l.copyTo(lpart); r.copyTo(rpart); for(int i = 0; i < l.rows; i+=20) cv::line(merged, cv::Point(0, i), cv::Point(merged.cols, i), CV_RGB(0, 255, 0)); return merged; } } TEST(FisheyeTest, projectPoints) { double cols = FishEye::imageSize.width, rows = FishEye::imageSize.height; const int N = 20; cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2; undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3)); cv::Vec2d* pts = distorted0.ptr(); cv::Vec2d c(FishEye::K(0, 2), FishEye::K(1, 2)); for(int y = 0, k = 0; y < N; ++y) for(int x = 0; x < N; ++x) { cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f)); pts[k++] = (point - c) * 0.85 + c; } cv::Fisheye::undistortPoints(distorted0, undist1, FishEye::K, FishEye::D); cv::Vec2d* u1 = undist1.ptr(); cv::Vec3d* u2 = undist2.ptr(); for(int i = 0; i < (int)distorted0.total(); ++i) u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0); cv::Fisheye::distortPoints(undist1, distorted1, FishEye::K, FishEye::D); cv::Fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), FishEye::K, FishEye::D); EXPECT_MAT_NEAR(distorted0, distorted1, 1e-5); EXPECT_MAT_NEAR(distorted0, distorted2, 1e-5); } TEST(FisheyeTest, undistortImage) { cv::Matx33d K = FishEye::K; cv::Mat D = cv::Mat(FishEye::D); std::string file = combine(datasets_repository_path, "image000001.png"); cv::Matx33d newK = K; cv::Mat distorted = cv::imread(file), undistorted; { newK(0, 0) = 100; newK(1, 1) = 100; cv::Fisheye::undistortImage(distorted, undistorted, K, D, newK); cv::Mat correct = cv::imread(combine(datasets_repository_path, "test_undistortImage/new_f_100.png")); if (correct.empty()) CV_Assert(cv::imwrite(combine(datasets_repository_path, "test_undistortImage/new_f_100.png"), undistorted)); else EXPECT_MAT_NEAR(correct, undistorted, 1e-15); } { double balance = 1.0; cv::Fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, distorted.size(), cv::noArray(), newK, balance); cv::Fisheye::undistortImage(distorted, undistorted, K, D, newK); cv::Mat correct = cv::imread(combine(datasets_repository_path, "test_undistortImage/balance_1.0.png")); if (correct.empty()) CV_Assert(cv::imwrite(combine(datasets_repository_path, "test_undistortImage/balance_1.0.png"), undistorted)); else EXPECT_MAT_NEAR(correct, undistorted, 1e-15); } { double balance = 0.0; cv::Fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, distorted.size(), cv::noArray(), newK, balance); cv::Fisheye::undistortImage(distorted, undistorted, K, D, newK); cv::Mat correct = cv::imread(combine(datasets_repository_path, "test_undistortImage/balance_0.0.png")); if (correct.empty()) CV_Assert(cv::imwrite(combine(datasets_repository_path, "test_undistortImage/balance_0.0.png"), undistorted)); else EXPECT_MAT_NEAR(correct, undistorted, 1e-15); } cv::waitKey(); } TEST(FisheyeTest, jacobians) { int n = 10; cv::Mat X(1, n, CV_64FC3); cv::Mat om(3, 1, CV_64F), T(3, 1, CV_64F); cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F); cv::Mat k(4, 1, CV_64F); double alpha; cv::RNG& r = cv::theRNG(); r.fill(X, cv::RNG::NORMAL, 2, 1); X = cv::abs(X) * 10; r.fill(om, cv::RNG::NORMAL, 0, 1); om = cv::abs(om); r.fill(T, cv::RNG::NORMAL, 0, 1); T = cv::abs(T); T.at(2) = 4; T *= 10; r.fill(f, cv::RNG::NORMAL, 0, 1); f = cv::abs(f) * 1000; r.fill(c, cv::RNG::NORMAL, 0, 1); c = cv::abs(c) * 1000; r.fill(k, cv::RNG::NORMAL, 0, 1); k*= 0.5; alpha = 0.01*r.gaussian(1); cv::Mat x1, x2, xpred; cv::Matx33d K(f.at(0), alpha * f.at(0), c.at(0), 0, f.at(1), c.at(1), 0, 0, 1); cv::Mat jacobians; cv::Fisheye::projectPoints(X, x1, om, T, K, k, alpha, jacobians); //test on T: cv::Mat dT(3, 1, CV_64FC1); r.fill(dT, cv::RNG::NORMAL, 0, 1); dT *= 1e-9*cv::norm(T); cv::Mat T2 = T + dT; cv::Fisheye::projectPoints(X, x2, om, T2, K, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-12); //test on om: cv::Mat dom(3, 1, CV_64FC1); r.fill(dom, cv::RNG::NORMAL, 0, 1); dom *= 1e-9*cv::norm(om); cv::Mat om2 = om + dom; cv::Fisheye::projectPoints(X, x2, om2, T, K, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-12); //test on f: cv::Mat df(2, 1, CV_64FC1); r.fill(df, cv::RNG::NORMAL, 0, 1); df *= 1e-9*cv::norm(f); cv::Matx33d K2 = K + cv::Matx33d(df.at(0), df.at(0) * alpha, 0, 0, df.at(1), 0, 0, 0, 0); cv::Fisheye::projectPoints(X, x2, om, T, K2, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-12); //test on c: cv::Mat dc(2, 1, CV_64FC1); r.fill(dc, cv::RNG::NORMAL, 0, 1); dc *= 1e-9*cv::norm(c); K2 = K + cv::Matx33d(0, 0, dc.at(0), 0, 0, dc.at(1), 0, 0, 0); cv::Fisheye::projectPoints(X, x2, om, T, K2, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-12); //test on k: cv::Mat dk(4, 1, CV_64FC1); r.fill(dk, cv::RNG::NORMAL, 0, 1); dk *= 1e-9*cv::norm(k); cv::Mat k2 = k + dk; cv::Fisheye::projectPoints(X, x2, om, T, K, k2, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-12); //test on alpha: cv::Mat dalpha(1, 1, CV_64FC1); r.fill(dalpha, cv::RNG::NORMAL, 0, 1); dalpha *= 1e-9*cv::norm(f); double alpha2 = alpha + dalpha.at(0); K2 = K + cv::Matx33d(0, f.at(0) * dalpha.at(0), 0, 0, 0, 0, 0, 0, 0); cv::Fisheye::projectPoints(X, x2, om, T, K, k, alpha2, cv::noArray()); xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-12); } TEST(FisheyeTest, Calibration) { const int n_images = 34; const int n_points = 48; cv::Size imageSize = cv::Size(1280, 800); std::vector > imagePoints; std::vector > objectPoints; readPoins(objectPoints, imagePoints, combine(datasets_repository_path, "calib-3_stereo_from_JY/left"), n_images, n_points); int flag = 0; flag |= cv::Fisheye::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::Fisheye::CALIB_CHECK_COND; flag |= cv::Fisheye::CALIB_FIX_SKEW; cv::Matx33d K; cv::Vec4d D; cv::Fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D, cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); EXPECT_MAT_NEAR(K, FishEye::K, 1e-11); EXPECT_MAT_NEAR(D, FishEye::D, 1e-12); } TEST(FisheyeTest, Homography) { const int n_images = 1; const int n_points = 48; cv::Size imageSize = cv::Size(1280, 800); std::vector > imagePoints; std::vector > objectPoints; readPoins(objectPoints, imagePoints, combine(datasets_repository_path, "calib-3_stereo_from_JY/left"), n_images, n_points); cv::internal::IntrinsicParams param; param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI), cv::Vec2d(imageSize.width / 2.0 - 0.5, imageSize.height / 2.0 - 0.5)); cv::Mat _imagePoints (imagePoints[0]); cv::Mat _objectPoints(objectPoints[0]); cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t(); _objectPoints = _objectPoints.reshape(1).t(); cv::Mat objectPointsMean, covObjectPoints; int Np = imagePointsNormalized.cols; cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, CV_COVAR_NORMAL | CV_COVAR_COLS); cv::SVD svd(covObjectPoints); cv::Mat R(svd.vt); if (cv::norm(R(cv::Rect(2, 0, 1, 2))) < 1e-6) R = cv::Mat::eye(3,3, CV_64FC1); if (cv::determinant(R) < 0) R = -R; cv::Mat T = -R * objectPointsMean; cv::Mat X_new = R * _objectPoints + T * cv::Mat::ones(1, Np, CV_64FC1); cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2)); cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1); X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2)); cv::Mat mrep = H * M; cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep); cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t(); cv::Vec2d std_err; cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err); std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1)); cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901); EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-16); } TEST(TestFisheye, EtimateUncertainties) { const int n_images = 34; const int n_points = 48; cv::Size imageSize = cv::Size(1280, 800); std::vector > imagePoints; std::vector > objectPoints; readPoins(objectPoints, imagePoints, combine(datasets_repository_path, "calib-3_stereo_from_JY/left"), n_images, n_points); int flag = 0; flag |= cv::Fisheye::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::Fisheye::CALIB_CHECK_COND; flag |= cv::Fisheye::CALIB_FIX_SKEW; cv::Matx33d K; cv::Vec4d D; std::vector rvec; std::vector tvec; cv::Fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D, cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); cv::internal::IntrinsicParams param, errors; cv::Vec2d err_std; double thresh_cond = 1e6; int check_cond = 1; param.Init(cv::Vec2d(K(0,0), K(1,1)), cv::Vec2d(K(0,2), K(1, 2)), D); param.isEstimate = std::vector(9, 1); param.isEstimate[4] = 0; errors.isEstimate = param.isEstimate; double rms; cv::internal::EstimateUncertainties(objectPoints, imagePoints, param, rvec, tvec, errors, err_std, thresh_cond, check_cond, rms); EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.29837104202046, 1.31565641071524), 1e-14); EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.890439368129246, 0.816096854937896), 1e-15); EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.00516248605191506, 0.0168181467500934, 0.0213118690274604, 0.00916010877545648), 1e-15); EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-15); CV_Assert(abs(rms - 0.263782587133546) < 1e-15); CV_Assert(errors.alpha == 0); } TEST(FisheyeTest, rectify) { const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); cv::Size calibration_size = FishEye::imageSize, requested_size = calibration_size; cv::Matx33d K1 = FishEye::K, K2 = K1; cv::Mat D1 = cv::Mat(FishEye::D), D2 = D1; cv::Vec3d T = FishEye::T; cv::Matx33d R = FishEye::R; double balance = 0.0, fov_scale = 1.1; cv::Mat R1, R2, P1, P2, Q; cv::Fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, R, T, R1, R2, P1, P2, Q, cv::CALIB_ZERO_DISPARITY, requested_size, balance, fov_scale); cv::Mat lmapx, lmapy, rmapx, rmapy; //rewrite for fisheye cv::Fisheye::initUndistortRectifyMap(K1, D1, R1, P1, requested_size, CV_32F, lmapx, lmapy); cv::Fisheye::initUndistortRectifyMap(K2, D2, R2, P2, requested_size, CV_32F, rmapx, rmapy); cv::Mat l, r, lundist, rundist; cv::VideoCapture lcap(combine(folder, "left/stereo_pair_%03d.jpg")), rcap(combine(folder, "right/stereo_pair_%03d.jpg")); for(int i = 0;; ++i) { lcap >> l; rcap >> r; if (l.empty() || r.empty()) break; int ndisp = 128; cv::rectangle(l, cv::Rect(255, 0, 829, l.rows-1), CV_RGB(255, 0, 0)); cv::rectangle(r, cv::Rect(255, 0, 829, l.rows-1), CV_RGB(255, 0, 0)); cv::rectangle(r, cv::Rect(255-ndisp, 0, 829+ndisp ,l.rows-1), CV_RGB(255, 0, 0)); cv::remap(l, lundist, lmapx, lmapy, cv::INTER_LINEAR); cv::remap(r, rundist, rmapx, rmapy, cv::INTER_LINEAR); cv::Mat rectification = mergeRectification(lundist, rundist); cv::Mat correct = cv::imread(combine_format(folder, "test_rectify/rectification_AB_%03d.png", i)); if (correct.empty()) cv::imwrite(combine_format(folder, "test_rectify/rectification_AB_%03d.png", i), rectification); else EXPECT_MAT_NEAR(correct, rectification, 1e-15); } }