#include "test_precomp.hpp" #include "opencv2/optim.hpp" TEST(Optim_LpSolver, regression) { cv::Mat A,B,z,etalon_z; if(true){ //cormen's example #1 A=(cv::Mat_(1,3)<<3,1,2); B=(cv::Mat_(3,4)<<1,1,3,30,2,2,5,24,4,1,2,36); std::cout<<"here A goes\n"<(1,3)<<8,4,0); ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); } if(true){ //cormen's example #2 A=(cv::Mat_(1,2)<<18,12.5); B=(cv::Mat_(3,3)<<1,1,20,1,0,20,0,1,16); std::cout<<"here A goes\n"<(1,2)<<20,0); ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); } if(true){ //cormen's example #3 A=(cv::Mat_(1,2)<<5,-3); B=(cv::Mat_(2,3)<<1,-1,1,2,1,2); std::cout<<"here A goes\n"<(1,2)<<1,0); ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); } if(false){ //cormen's example #4 - unfeasible A=(cv::Mat_(1,3)<<-1,-1,-1); B=(cv::Mat_(2,4)<<-2,-7.5,-3,-10000,-20,-5,-10,-30000); std::cout<<"here A goes\n"<(1,2)<<1,0); ASSERT_EQ(cv::countNonZero(z!=etalon_z),0); } } //TODO // get optimal solution from initial (0,0,...,0) - DONE // milestone: pass first test (wo initial solution) - DONE // learn how to get initial solution // Blands_rule // 1_more_test & make_more_clear // -> **contact_Vadim**: min_l2_norm, init_optional_fsbl_check, error_codes, comment_style-too_many?, copyTo temp headers // ??how to get smallest l2 norm // FUTURE: compress&debug-> more_tests(Cormen) -> readNumRecipes-> fast&stable || hill_climbing