import numpy as np import cv2 import itertools as it ''' from scipy.io import loadmat m = loadmat('ex4data1.mat') X = m['X'].reshape(-1, 20, 20) X = np.transpose(X, (0, 2, 1)) img = np.vstack(map(np.hstack, X.reshape(-1, 100, 20, 20))) img = np.uint8(np.clip(img, 0, 1)*255) cv2.imwrite('digits.png', img) ''' def unroll_responses(responses, class_n): sample_n = len(responses) new_responses = np.zeros((sample_n, class_n), np.float32) new_responses[np.arange(sample_n), responses] = 1 return new_responses SZ = 20 digits_img = cv2.imread('digits.png', 0) h, w = digits_img.shape digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)] digits = np.float32(digits).reshape(-1, SZ*SZ) N = len(digits) labels = np.repeat(np.arange(10), N/10) shuffle = np.random.permutation(N) train_n = int(0.9*N) digits_train, digits_test = np.split(digits[shuffle], [train_n]) labels_train, labels_test = np.split(labels[shuffle], [train_n]) labels_train_unrolled = unroll_responses(labels_train, 10) model = cv2.ANN_MLP() layer_sizes = np.int32([SZ*SZ, 25, 10]) model.create(layer_sizes) # CvANN_MLP_TrainParams::BACKPROP,0.001 params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01), train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP, bp_dw_scale = 0.001, bp_moment_scale = 0.0 ) print 'training...' model.train(digits_train, labels_train_unrolled, None, params=params) model.save('dig_nn.dat') model.load('dig_nn.dat') ret, resp = model.predict(digits_test) resp = resp.argmax(-1) error_mask = (resp == labels_test) print error_mask.mean() def grouper(n, iterable, fillvalue=None): "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return it.izip_longest(fillvalue=fillvalue, *args) def mosaic(w, imgs): imgs = iter(imgs) img0 = imgs.next() pad = np.zeros_like(img0) imgs = it.chain([img0], imgs) rows = grouper(w, imgs, pad) return np.vstack(map(np.hstack, rows)) test_img = np.uint8(digits_test).reshape(-1, SZ, SZ) def vis_resp(img, flag): img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) if not flag: img[...,:2] = 0 return img test_img = mosaic(25, it.starmap(vis_resp, it.izip(test_img, error_mask))) cv2.imshow('test', test_img) cv2.waitKey()