opencv/modules/imgproc/src/intersection.cpp
Tiago De Gaspari 3cf4375387
Merge pull request #19842 from gasparitiago:3.4
Update rotatedRectangleIntersection function to calculate near to origin

* Change type used in points function from RotatedRect

In the function that sets the points of a RotatedRect, the types

should be double in order to keep the precision when dealing with
RotatedRects that are defined far from the origin.

This commit solves the problem in some assertions from
rotatedRectangleIntersection when dealing with rectangles far from
origin.

* added proper type casts

* Update rotatedRectangleIntersection function to calculate near to origin

This commit changes the rotatedRectangleIntersection function in order
to calculate the intersection of two rectangles considering that they
are shifted near the coordinates origin (0, 0).

This commit solves the problem in some assertions from
rotatedRectangleIntersection when dealing with rectangles far from
origin.

* Revert type changes in types.cpp and adequate code to c++98

* Revert unnecessary casts on types.cpp

Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
2021-06-12 23:28:54 +03:00

342 lines
9.9 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Nghia Ho, nghiaho12@yahoo.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of OpenCV Foundation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
static int _rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, std::vector<Point2f> &intersection )
{
CV_INSTRUMENT_REGION();
// L2 metric
const float samePointEps = std::max(1e-16f, 1e-6f * (float)std::max(rect1.size.area(), rect2.size.area()));
Point2f vec1[4], vec2[4];
Point2f pts1[4], pts2[4];
rect1.points(pts1);
rect2.points(pts2);
int ret = INTERSECT_FULL;
// Specical case of rect1 == rect2
{
bool same = true;
for( int i = 0; i < 4; i++ )
{
if( fabs(pts1[i].x - pts2[i].x) > samePointEps || (fabs(pts1[i].y - pts2[i].y) > samePointEps) )
{
same = false;
break;
}
}
if(same)
{
intersection.resize(4);
for( int i = 0; i < 4; i++ )
{
intersection[i] = pts1[i];
}
return INTERSECT_FULL;
}
}
// Line vector
// A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
for( int i = 0; i < 4; i++ )
{
vec1[i].x = pts1[(i+1)%4].x - pts1[i].x;
vec1[i].y = pts1[(i+1)%4].y - pts1[i].y;
vec2[i].x = pts2[(i+1)%4].x - pts2[i].x;
vec2[i].y = pts2[(i+1)%4].y - pts2[i].y;
}
// Line test - test all line combos for intersection
for( int i = 0; i < 4; i++ )
{
for( int j = 0; j < 4; j++ )
{
// Solve for 2x2 Ax=b
float x21 = pts2[j].x - pts1[i].x;
float y21 = pts2[j].y - pts1[i].y;
float vx1 = vec1[i].x;
float vy1 = vec1[i].y;
float vx2 = vec2[j].x;
float vy2 = vec2[j].y;
float det = vx2*vy1 - vx1*vy2;
float t1 = (vx2*y21 - vy2*x21) / det;
float t2 = (vx1*y21 - vy1*x21) / det;
// This takes care of parallel lines
if( cvIsInf(t1) || cvIsInf(t2) || cvIsNaN(t1) || cvIsNaN(t2) )
{
continue;
}
if( t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f )
{
float xi = pts1[i].x + vec1[i].x*t1;
float yi = pts1[i].y + vec1[i].y*t1;
intersection.push_back(Point2f(xi,yi));
}
}
}
if( !intersection.empty() )
{
ret = INTERSECT_PARTIAL;
}
// Check for vertices from rect1 inside recct2
for( int i = 0; i < 4; i++ )
{
// We do a sign test to see which side the point lies.
// If the point all lie on the same sign for all 4 sides of the rect,
// then there's an intersection
int posSign = 0;
int negSign = 0;
float x = pts1[i].x;
float y = pts1[i].y;
for( int j = 0; j < 4; j++ )
{
// line equation: Ax + By + C = 0
// see which side of the line this point is at
float A = -vec2[j].y;
float B = vec2[j].x;
float C = -(A*pts2[j].x + B*pts2[j].y);
float s = A*x+ B*y+ C;
if( s >= 0 )
{
posSign++;
}
else
{
negSign++;
}
}
if( posSign == 4 || negSign == 4 )
{
intersection.push_back(pts1[i]);
}
}
// Reverse the check - check for vertices from rect2 inside recct1
for( int i = 0; i < 4; i++ )
{
// We do a sign test to see which side the point lies.
// If the point all lie on the same sign for all 4 sides of the rect,
// then there's an intersection
int posSign = 0;
int negSign = 0;
float x = pts2[i].x;
float y = pts2[i].y;
for( int j = 0; j < 4; j++ )
{
// line equation: Ax + By + C = 0
// see which side of the line this point is at
float A = -vec1[j].y;
float B = vec1[j].x;
float C = -(A*pts1[j].x + B*pts1[j].y);
float s = A*x + B*y + C;
if( s >= 0 )
{
posSign++;
}
else
{
negSign++;
}
}
if( posSign == 4 || negSign == 4 )
{
intersection.push_back(pts2[i]);
}
}
int N = (int)intersection.size();
if (N == 0)
{
return INTERSECT_NONE;
}
// Get rid of duplicated points
int Nstride = N;
cv::AutoBuffer<float, 100> distPt(N * N);
cv::AutoBuffer<int> ptDistRemap(N);
for (int i = 0; i < N; ++i)
{
const Point2f pt0 = intersection[i];
ptDistRemap[i] = i;
for (int j = i + 1; j < N; )
{
const Point2f pt1 = intersection[j];
float d2 = normL2Sqr<float>(pt1 - pt0);
if(d2 <= samePointEps)
{
if (j < N - 1)
intersection[j] = intersection[N - 1];
N--;
continue;
}
distPt[i*Nstride + j] = d2;
++j;
}
}
while (N > 8) // we still have duplicate points after samePointEps threshold (eliminate closest points)
{
int minI = 0;
int minJ = 1;
float minD = distPt[1];
for (int i = 0; i < N - 1; ++i)
{
float* pDist = distPt.data() + Nstride * ptDistRemap[i];
for (int j = i + 1; j < N; ++j)
{
float d = pDist[ptDistRemap[j]];
if (d < minD)
{
minD = d;
minI = i;
minJ = j;
}
}
}
CV_Assert(fabs(normL2Sqr<float>(intersection[minI] - intersection[minJ]) - minD) < 1e-6); // ptDistRemap is not corrupted
// drop minJ point
if (minJ < N - 1)
{
intersection[minJ] = intersection[N - 1];
ptDistRemap[minJ] = ptDistRemap[N - 1];
}
N--;
}
// order points
for (int i = 0; i < N - 1; ++i)
{
Point2f diffI = intersection[i + 1] - intersection[i];
for (int j = i + 2; j < N; ++j)
{
Point2f diffJ = intersection[j] - intersection[i];
if (diffI.cross(diffJ) < 0)
{
std::swap(intersection[i + 1], intersection[j]);
diffI = diffJ;
}
}
}
intersection.resize(N);
return ret;
}
int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion )
{
CV_INSTRUMENT_REGION();
if (rect1.size.empty() || rect2.size.empty())
{
intersectingRegion.release();
return INTERSECT_NONE;
}
// Shift rectangles closer to origin (0, 0) to improve the calculation of the intesection region
// To do that, the average center of the rectangles is moved to the origin
const Point2f averageCenter = (rect1.center + rect2.center) / 2.0f;
RotatedRect shiftedRect1(rect1);
RotatedRect shiftedRect2(rect2);
// Move rectangles closer to origin
shiftedRect1.center -= averageCenter;
shiftedRect2.center -= averageCenter;
std::vector <Point2f> intersection; intersection.reserve(24);
const int ret = _rotatedRectangleIntersection(shiftedRect1, shiftedRect2, intersection);
// If return is not None, the intersection Points are shifted back to the original position
// and copied to the interesectingRegion
if (ret != INTERSECT_NONE)
{
for (size_t i = 0; i < intersection.size(); ++i)
{
intersection[i] += averageCenter;
}
Mat(intersection).copyTo(intersectingRegion);
}
else
{
intersectingRegion.release();
}
return ret;
}
} // end namespace