opencv/modules/gapi/src/executor/gtbbexecutor.cpp
2021-05-11 12:52:47 +03:00

438 lines
17 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020-2021 Intel Corporation
#include "gtbbexecutor.hpp"
#if defined(HAVE_TBB) && (TBB_INTERFACE_VERSION < 12000)
// TODO: TBB task API has been deprecated and removed in 12000
#include "utils/itt.hpp"
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/util/copy_through_move.hpp>
#include "logger.hpp" // GAPI_LOG
#include <tbb/task.h>
#include <memory> // unique_ptr
#include <atomic>
#include <condition_variable>
#include <chrono>
#define ASSERT(expr) GAPI_DbgAssert(expr)
#define LOG_INFO(tag, ...) GAPI_LOG_INFO(tag, __VA_ARGS__)
#define LOG_WARNING(tag, ...) GAPI_LOG_WARNING(tag, __VA_ARGS__)
#define LOG_DEBUG(tag, ...) GAPI_LOG_DEBUG(tag, __VA_ARGS__)
namespace cv { namespace gimpl { namespace parallel {
namespace detail {
// some helper staff to deal with tbb::task related entities
namespace tasking {
enum class use_tbb_scheduler_bypass {
NO,
YES
};
inline void assert_graph_is_running(tbb::task* root) {
// tbb::task::wait_for_all block calling thread until task ref_count is dropped to 1
// So if the root task ref_count is greater than 1 graph still has a job to do and
// according wait_for_all() has not yet returned
ASSERT(root->ref_count() > 1);
}
// made template to break circular dependencies
template<typename body_t>
struct functor_task : tbb::task {
body_t body;
template<typename arg_t>
functor_task(arg_t&& a) : body(std::forward<arg_t>(a)) {}
tbb::task * execute() override {
assert_graph_is_running(parent());
auto reuse_current_task = body();
// if needed, say TBB to execute current task once again
return (use_tbb_scheduler_bypass::YES == reuse_current_task) ? (recycle_as_continuation(), this) : nullptr;
}
~functor_task() {
assert_graph_is_running(parent());
}
};
template<typename body_t>
auto allocate_task(tbb::task* root, body_t const& body) -> functor_task<body_t>* {
return new(tbb::task::allocate_additional_child_of(*root)) functor_task<body_t>{body};
}
template<typename body_t>
void spawn_no_assert(tbb::task* root, body_t const& body) {
tbb::task::spawn(* allocate_task(root, body));
}
template<typename body_t>
void batch_spawn(size_t count, tbb::task* root, body_t const& body, bool do_assert_graph_is_running = true) {
GAPI_ITT_STATIC_LOCAL_HANDLE(ittTbbSpawnReadyBlocks, "spawn ready blocks");
GAPI_ITT_AUTO_TRACE_GUARD(ittTbbSpawnReadyBlocks);
if (do_assert_graph_is_running) {
assert_graph_is_running(root);
}
for (size_t i=0; i<count; i++) {
spawn_no_assert(root, body);
}
}
struct destroy_tbb_task {
void operator()(tbb::task* t) const { if (t) tbb::task::destroy(*t);};
};
using root_t = std::unique_ptr<tbb::task, destroy_tbb_task>;
root_t inline create_root(tbb::task_group_context& ctx) {
root_t root{new (tbb::task::allocate_root(ctx)) tbb::empty_task};
root->set_ref_count(1); // required by wait_for_all, as it waits until counter drops to 1
return root;
}
std::size_t inline tg_context_traits() {
// Specify tbb::task_group_context::concurrent_wait in the traits to ask TBB scheduler not to change
// ref_count of the task we wait on (root) when wait is complete.
return tbb::task_group_context::default_traits | tbb::task_group_context::concurrent_wait;
}
} // namespace tasking
namespace async {
struct async_tasks_t {
std::atomic<size_t> count {0};
std::condition_variable cv;
std::mutex mtx;
};
enum class wake_tbb_master {
NO,
YES
};
void inline wake_master(async_tasks_t& async_tasks, wake_tbb_master wake_master) {
// TODO: seems that this can be relaxed
auto active_async_tasks = --async_tasks.count;
if ((active_async_tasks == 0) || (wake_master == wake_tbb_master::YES)) {
// Was the last async task or asked to wake TBB master up(e.g. there are new TBB tasks to execute)
GAPI_ITT_STATIC_LOCAL_HANDLE(ittTbbUnlockMasterThread, "Unlocking master thread");
GAPI_ITT_AUTO_TRACE_GUARD(ittTbbUnlockMasterThread);
// While decrement of async_tasks_t::count is atomic, it might occur after the waiting
// thread has read its value but _before_ it actually starts waiting on the condition variable.
// So, lock acquire is needed to guarantee that current condition check (if any) in the waiting thread
// (possibly ran in parallel to async_tasks_t::count decrement above) is completed _before_ signal is issued.
// Therefore when notify_one is called, waiting thread is either sleeping on the condition variable or
// running a new check which is guaranteed to pick the new value and return from wait().
// There is no need to _hold_ the lock while signaling, only to acquire it.
std::unique_lock<std::mutex> {async_tasks.mtx}; // Acquire and release the lock.
async_tasks.cv.notify_one();
}
}
struct master_thread_sleep_lock_t
{
struct sleep_unlock {
void operator()(async_tasks_t* t) const {
ASSERT(t);
wake_master(*t, wake_tbb_master::NO);
}
};
std::unique_ptr<async_tasks_t, sleep_unlock> guard;
master_thread_sleep_lock_t() = default;
master_thread_sleep_lock_t(async_tasks_t* async_tasks_ptr) : guard(async_tasks_ptr) {
// TODO: seems that this can be relaxed
++(guard->count);
}
void unlock(wake_tbb_master wake) {
if (auto* p = guard.release()) {
wake_master(*p, wake);
}
}
};
master_thread_sleep_lock_t inline lock_sleep_master(async_tasks_t& async_tasks) {
return {&async_tasks};
}
enum class is_tbb_work_present {
NO,
YES
};
//RAII object to block TBB master thread (one that does wait_for_all())
//N.B. :wait_for_all() return control when root ref_count drops to 1,
struct root_wait_lock_t {
struct root_decrement_ref_count{
void operator()(tbb::task* t) const {
ASSERT(t);
auto result = t->decrement_ref_count();
ASSERT(result >= 1);
}
};
std::unique_ptr<tbb::task, root_decrement_ref_count> guard;
root_wait_lock_t() = default;
root_wait_lock_t(tasking::root_t& root, is_tbb_work_present& previous_state) : guard{root.get()} {
// Block the master thread while the *this object is alive.
auto new_root_ref_count = root->add_ref_count(1);
previous_state = (new_root_ref_count == 2) ? is_tbb_work_present::NO : is_tbb_work_present::YES;
}
};
root_wait_lock_t inline lock_wait_master(tasking::root_t& root, is_tbb_work_present& previous_state) {
return root_wait_lock_t{root, previous_state};
}
} // namespace async
inline tile_node* pop(prio_items_queue_t& q) {
tile_node* node = nullptr;
bool popped = q.try_pop(node);
ASSERT(popped && "queue should be non empty as we push items to it before we spawn");
return node;
}
namespace graph {
// Returns : number of items actually pushed into the q
std::size_t inline push_ready_dependants(prio_items_queue_t& q, tile_node* node) {
GAPI_ITT_STATIC_LOCAL_HANDLE(ittTbbAddReadyBlocksToQueue, "add ready blocks to queue");
GAPI_ITT_AUTO_TRACE_GUARD(ittTbbAddReadyBlocksToQueue);
std::size_t ready_items = 0;
// enable dependent tasks
for (auto* dependant : node->dependants) {
// fetch_and_sub returns previous value
if (1 == dependant->dependency_count.fetch_sub(1)) {
// tile node is ready for execution, add it to the queue
q.push(dependant);
++ready_items;
}
}
return ready_items;
}
struct exec_ctx {
tbb::task_arena& arena;
prio_items_queue_t& q;
tbb::task_group_context tg_ctx;
tasking::root_t root;
detail::async::async_tasks_t async_tasks;
std::atomic<size_t> executed {0};
exec_ctx(tbb::task_arena& arena_, prio_items_queue_t& q_)
: arena(arena_), q(q_),
// As the traits is last argument, explicitly specify (default) value for first argument
tg_ctx{tbb::task_group_context::bound, tasking::tg_context_traits()},
root(tasking::create_root(tg_ctx))
{}
};
// At the moment there are no suitable tools to manage TBB priorities on task by task basis.
// Instead priority queue is used to respect tile_node priorities.
// As well, TBB task is not bound to any particular tile_node until actually executed.
// Strictly speaking there are two graphs here:
// - G-API one, described by the connected tile_node instances.
// This graph is :
// - Known beforehand, and do not change during the execution (i.e. static)
// - Contains both TBB non-TBB parts
// - prioritized, (i.e. all nodes has assigned priority of execution)
//
// - TBB task tree, which is :
// - flat (Has only two levels : root and leaves)
// - dynamic, i.e. new leaves are added on demand when new tbb tasks are spawned
// - describes only TBB/CPU part of the whole graph
// - non-prioritized (i.e. all tasks are created equal)
// Class below represents TBB task payload.
//
// Each instance basically does the three things :
// 1. Gets the tile_node item from the top of the queue
// 2. Executes its body
// 3. Pushes dependent tile_nodes to the queue once they are ready
//
struct task_body {
exec_ctx& ctx;
std::size_t push_ready_dependants(tile_node* node) const {
return graph::push_ready_dependants(ctx.q, node);
}
void spawn_clones(std::size_t items) const {
tasking::batch_spawn(items, ctx.root.get(), *this);
}
task_body(exec_ctx& ctx_) : ctx(ctx_) {}
tasking::use_tbb_scheduler_bypass operator()() const {
ASSERT(!ctx.q.empty() && "Spawned task with no job to do ? ");
tile_node* node = detail::pop(ctx.q);
auto result = tasking::use_tbb_scheduler_bypass::NO;
// execute the task
if (auto p = util::get_if<tile_node::sync_task_body>(&(node->task_body))) {
// synchronous task
p->body();
std::size_t ready_items = push_ready_dependants(node);
if (ready_items > 0) {
// spawn one less tasks and say TBB to reuse(recycle) current task
spawn_clones(ready_items - 1);
result = tasking::use_tbb_scheduler_bypass::YES;
}
}
else {
LOG_DEBUG(NULL, "Async task");
using namespace detail::async;
using util::copy_through_move;
auto block_master = copy_through_move(lock_sleep_master(ctx.async_tasks));
auto self_copy = *this;
auto callback = [node, block_master, self_copy] () mutable /*due to block_master.get().unlock()*/ {
LOG_DEBUG(NULL, "Async task callback is called");
// Implicitly unlock master right in the end of callback
auto master_sleep_lock = std::move(block_master);
std::size_t ready_items = self_copy.push_ready_dependants(node);
if (ready_items > 0) {
auto master_was_active = is_tbb_work_present::NO;
{
GAPI_ITT_STATIC_LOCAL_HANDLE(ittTbbEnqueueSpawnReadyBlocks, "enqueueing a spawn of ready blocks");
GAPI_ITT_AUTO_TRACE_GUARD(ittTbbEnqueueSpawnReadyBlocks);
// Force master thread (one that does wait_for_all()) to (actively) wait for enqueued tasks
// and unlock it right after all dependent tasks are spawned.
auto root_wait_lock = copy_through_move(lock_wait_master(self_copy.ctx.root, master_was_active));
// TODO: add test to cover proper holding of root_wait_lock
// As the calling thread most likely is not TBB one, instead of spawning TBB tasks directly we
// enqueue a task which will spawn them.
// For master thread to not leave wait_for_all() prematurely,
// hold the root_wait_lock until need tasks are actually spawned.
self_copy.ctx.arena.enqueue([ready_items, self_copy, root_wait_lock]() {
self_copy.spawn_clones(ready_items);
// TODO: why we need this? Either write a descriptive comment or remove it
volatile auto unused = root_wait_lock.get().guard.get();
util::suppress_unused_warning(unused);
});
}
// Wake master thread (if any) to pick up the enqueued tasks iff:
// 1. there is new TBB work to do, and
// 2. Master thread was sleeping on condition variable waiting for async tasks to complete
// (There was no active work before (i.e. root->ref_count() was == 1))
auto wake_master = (master_was_active == is_tbb_work_present::NO) ?
wake_tbb_master::YES : wake_tbb_master::NO;
master_sleep_lock.get().unlock(wake_master);
}
};
auto& body = util::get<tile_node::async_task_body>(node->task_body).body;
body(std::move(callback), node->total_order_index);
}
ctx.executed++;
// reset dependecy_count to initial state to simplify re-execution of the same graph
node->dependency_count = node->dependencies;
return result;
}
};
}
} // namespace detail
}}} // namespace cv::gimpl::parallel
void cv::gimpl::parallel::execute(prio_items_queue_t& q) {
// get the reference to current task_arena (i.e. one we are running in)
#if TBB_INTERFACE_VERSION > 9002
using attach_t = tbb::task_arena::attach;
#else
using attach_t = tbb::internal::attach;
#endif
tbb::task_arena arena{attach_t{}};
execute(q, arena);
}
void cv::gimpl::parallel::execute(prio_items_queue_t& q, tbb::task_arena& arena) {
using namespace detail;
graph::exec_ctx ctx{arena, q};
arena.execute(
[&]() {
// Passed in queue is assumed to contain starting tasks, i.e. ones with no (or resolved) dependencies
auto num_start_tasks = q.size();
// TODO: use recursive spawning and task soft affinity for faster task distribution
// As graph is starting and no task has been spawned yet
// assert_graph_is_running(root) will not hold, so spawn without assert
tasking::batch_spawn(num_start_tasks, ctx.root.get(), graph::task_body{ctx}, /* assert_graph_is_running*/false);
using namespace std::chrono;
high_resolution_clock timer;
auto tbb_work_done = [&ctx]() { return 1 == ctx.root->ref_count(); };
auto async_work_done = [&ctx]() { return 0 == ctx.async_tasks.count; };
do {
// First participate in execution of TBB graph till there are no more ready tasks.
ctx.root->wait_for_all();
if (!async_work_done()) { // Wait on the conditional variable iff there is active async work
auto start = timer.now();
std::unique_lock<std::mutex> lk(ctx.async_tasks.mtx);
// Wait (probably by sleeping) until all async tasks are completed or new TBB tasks are created.
// FIXME: Use TBB resumable tasks here to avoid blocking TBB thread
ctx.async_tasks.cv.wait(lk, [&]{return async_work_done() || !tbb_work_done() ;});
LOG_INFO(NULL, "Slept for " << duration_cast<milliseconds>(timer.now() - start).count() << " ms \n");
}
}
while(!tbb_work_done() || !async_work_done());
ASSERT(tbb_work_done() && async_work_done() && "Graph is still running?");
}
);
LOG_INFO(NULL, "Done. Executed " << ctx.executed << " tasks");
}
std::ostream& cv::gimpl::parallel::operator<<(std::ostream& o, tile_node const& n) {
o << "("
<< " at:" << &n << ","
<< "indx: " << n.total_order_index << ","
<< "deps #:" << n.dependency_count.value << ", "
<< "prods:" << n.dependants.size();
o << "[";
for (auto* d: n.dependants) {
o << d << ",";
}
o << "]";
o << ")";
return o;
}
#endif // HAVE_TBB && TBB_INTERFACE_VERSION