opencv/modules/dnn/src/opencl/mvn.cl

320 lines
10 KiB
Common Lisp

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif
#define Dtype float
#define Dtype4 float4
#define Dtype8 float8
#if NUM == 8
#define load(src, index) vload8(0, src + index)
#define store(vec, dst, index) vstore8(vec, 0, dst + index)
#define vec_type Dtype8
#define CALC_MEAN calc_mean8
#define MVN mvn8
#define MEAN_FUSE mean_fuse8
#define MVN_FUSE mvn_fuse8
#elif NUM == 4
#define load(src, index) vload4(0, src + index)
#define store(vec, dst, index) vstore4(vec, 0, dst + index)
#define vec_type Dtype4
#define CALC_MEAN calc_mean4
#define MVN mvn4
#define MEAN_FUSE mean_fuse4
#define MVN_FUSE mvn_fuse4
#elif NUM == 1
#define load(src, index) src[index]
#define store(vec, dst, index) dst[index] = vec
#define vec_type Dtype
#define CALC_MEAN calc_mean1
#define MVN mvn1
#define MEAN_FUSE mean_fuse1
#define MVN_FUSE mvn_fuse1
#endif
__kernel void CALC_MEAN(__global const Dtype* src,
const int rows,
const int cols,
__global Dtype* mean,
__global Dtype* dst)
{
int x = get_global_id(0);
int y = get_global_id(1) * NUM;
int index = x * cols + y;
if (x >= rows || y >= cols)
return;
Dtype mean_val = mean[x];
vec_type src_vec = load(src, index);
vec_type dst_vec = src_vec - (vec_type)mean_val;
dst_vec = dst_vec * dst_vec;
store(dst_vec, dst, index);
}
__kernel void MVN(__global const Dtype* src,
const int rows,
const int cols,
const Dtype eps,
__global const Dtype* mean,
__global const Dtype* dev,
__global const Dtype* bnorm_weight,
__global const Dtype* bnorm_bias,
const int channels,
const float relu_slope,
__global Dtype* dst)
{
int x = get_global_id(0);
int y = get_global_id(1) * NUM;
int index = x * cols + y;
if (x >= rows || y >= cols)
return;
Dtype mean_val = mean[x];
Dtype dev_val = sqrt(dev[x]);
Dtype alpha;
#ifdef NORM_VARIANCE
alpha = 1 / (eps + dev_val);
#else
alpha = 1;
#endif
Dtype w = 1.f, b = 0.f;
#ifdef FUSE_BATCH_NORM
w = bnorm_weight[x % channels];
b = bnorm_bias[x % channels];
#endif
vec_type src_vec = load(src, index) - (vec_type)mean_val;
vec_type dst_vec = src_vec * alpha;
dst_vec = dst_vec * w + (vec_type)b;
#ifdef FUSE_RELU
vec_type new_val = dst_vec * relu_slope;
dst_vec = select(new_val, dst_vec, dst_vec > (vec_type)0.f);
#endif
store(dst_vec, dst, index);
}
__kernel void MEAN_FUSE(__global const T * A,
unsigned int A_col_size,
float alpha,
__global T4 * mean,
__global Dtype * tmp,
__local Dtype4 * work)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
const __global T *src0_read = A + row_gid * 4 * A_col_size;
__global Dtype *dst0_read = tmp + row_gid * 4 * A_col_size;
Dtype4 dot0, dot1, dot2, dot3;
dot0 = dot1 = dot2 = dot3 = (Dtype4)(0.f);
unsigned int i = lid;
const Dtype4 b0 = (Dtype4)1.f;
while( i < A_col_size / 4)
{
const T4 a0 = vload4(i, src0_read);
const T4 a1 = vload4(i, src0_read + A_col_size);
const T4 a2 = vload4(i, src0_read + 2 * A_col_size);
const T4 a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 += convert_float4(a0);
dot1 += convert_float4(a1);
dot2 += convert_float4(a2);
dot3 += convert_float4(a3);
i += get_local_size(0);
}
work[lid].s0 = dot(dot0, b0);
work[lid].s1 = dot(dot1, b0);
work[lid].s2 = dot(dot2, b0);
work[lid].s3 = dot(dot3, b0);
for(unsigned int stride=get_local_size(0)/2 ; stride>0 ; stride>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < stride)
work[lid] += work[lid+stride];
}
barrier(CLK_LOCAL_MEM_FENCE);
if(lid == 0)
{
mean[row_gid] = convert_T(alpha * work[0]);
}
Dtype4 sum = work[0] * alpha;
i = lid;
while( i < A_col_size / 4)
{
const T4 a0 = vload4(i, src0_read);
const T4 a1 = vload4(i, src0_read + A_col_size);
const T4 a2 = vload4(i, src0_read + 2 * A_col_size);
const T4 a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 = convert_float4(a0) - (Dtype4)sum.x;
dot1 = convert_float4(a1) - (Dtype4)sum.y;
dot2 = convert_float4(a2) - (Dtype4)sum.z;
dot3 = convert_float4(a3) - (Dtype4)sum.w;
dot0 = dot0 * dot0;
dot1 = dot1 * dot1;
dot2 = dot2 * dot2;
dot3 = dot3 * dot3;
vstore4(dot0, i, dst0_read);
vstore4(dot1, i, dst0_read + A_col_size);
vstore4(dot2, i, dst0_read + 2 * A_col_size);
vstore4(dot3, i, dst0_read + 3 * A_col_size);
i += get_local_size(0);
}
}
__kernel void MVN_FUSE(__global const Dtype * tmp,
__global const T * A,
__global const T4 * mean,
unsigned int A_col_size,
const float alpha_val,
const float eps,
const float relu_slope,
__global const Dtype4 * bnorm_weight,
__global const Dtype4 * bnorm_bias,
__global T * B,
__local Dtype4 * work)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
const __global Dtype *src0_read = tmp + row_gid * 4 * A_col_size;
const __global T *src1_read = A + row_gid * 4 * A_col_size;
__global T *dst0_read = B + row_gid * 4 * A_col_size;
Dtype4 dot0, dot1, dot2, dot3;
dot0 = dot1 = dot2 = dot3 = (Dtype4)(0.f);
unsigned int i = lid;
const Dtype4 b0 = (Dtype4)1.f;
while( i < A_col_size / 4)
{
const Dtype4 a0 = vload4(i, src0_read);
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 += a0;
dot1 += a1;
dot2 += a2;
dot3 += a3;
i += get_local_size(0);
}
work[lid].s0 = dot(dot0, b0);
work[lid].s1 = dot(dot1, b0);
work[lid].s2 = dot(dot2, b0);
work[lid].s3 = dot(dot3, b0);
for(unsigned int stride=get_local_size(0)/2 ; stride>0 ; stride>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < stride)
work[lid] += work[lid+stride];
}
barrier(CLK_LOCAL_MEM_FENCE);
Dtype4 mean_val = convert_float4(mean[row_gid]);
Dtype4 dev_val = sqrt(work[0] * alpha_val) + (Dtype4)eps;
Dtype4 alpha = (Dtype4)1.f / dev_val;
Dtype4 w = (Dtype4)1.f;
Dtype4 b = (Dtype4)0.f;
#ifdef FUSE_BATCH_NORM
w = bnorm_weight[row_gid];
b = bnorm_bias[row_gid];
#endif
i = lid;
while( i < A_col_size / 4)
{
const T4 a0 = vload4(i, src1_read);
const T4 a1 = vload4(i, src1_read + A_col_size);
const T4 a2 = vload4(i, src1_read + 2 * A_col_size);
const T4 a3 = vload4(i, src1_read + 3 * A_col_size);
dot0 = (convert_float4(a0) - (Dtype4)mean_val.x) * alpha.x;
dot1 = (convert_float4(a1) - (Dtype4)mean_val.y) * alpha.y;
dot2 = (convert_float4(a2) - (Dtype4)mean_val.z) * alpha.z;
dot3 = (convert_float4(a3) - (Dtype4)mean_val.w) * alpha.w;
dot0 = dot0 * w.x + (Dtype4)b.x;
dot1 = dot1 * w.y + (Dtype4)b.y;
dot2 = dot2 * w.z + (Dtype4)b.z;
dot3 = dot3 * w.w + (Dtype4)b.w;
#ifdef FUSE_RELU
Dtype4 new0 = dot0 * relu_slope;
dot0 = select(new0, dot0, dot0 > (Dtype4)0.f);
Dtype4 new1 = dot1 * relu_slope;
dot1 = select(new1, dot1, dot1 > (Dtype4)0.f);
Dtype4 new2 = dot2 * relu_slope;
dot2 = select(new2, dot2, dot2 > (Dtype4)0.f);
Dtype4 new3 = dot3 * relu_slope;
dot3 = select(new3, dot3, dot3 > (Dtype4)0.f);
#endif
vstore4(convert_T(dot0), i, dst0_read);
vstore4(convert_T(dot1), i, dst0_read + A_col_size);
vstore4(convert_T(dot2), i, dst0_read + 2 * A_col_size);
vstore4(convert_T(dot3), i, dst0_read + 3 * A_col_size);
i += get_local_size(0);
}
}