opencv/modules/video/src/motempl.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

487 lines
17 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* motion templates */
CV_IMPL void
cvUpdateMotionHistory( const void* silhouette, void* mhimg,
double timestamp, double mhi_duration )
{
CvMat silhstub, *silh = cvGetMat(silhouette, &silhstub);
CvMat mhistub, *mhi = cvGetMat(mhimg, &mhistub);
if( !CV_IS_MASK_ARR( silh ))
CV_Error( CV_StsBadMask, "" );
if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 )
CV_Error( CV_StsUnsupportedFormat, "" );
if( !CV_ARE_SIZES_EQ( mhi, silh ))
CV_Error( CV_StsUnmatchedSizes, "" );
CvSize size = cvGetMatSize( mhi );
if( CV_IS_MAT_CONT( mhi->type & silh->type ))
{
size.width *= size.height;
size.height = 1;
}
float ts = (float)timestamp;
float delbound = (float)(timestamp - mhi_duration);
int x, y;
#if CV_SSE2
volatile bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2);
#endif
for( y = 0; y < size.height; y++ )
{
const uchar* silhData = silh->data.ptr + silh->step*y;
float* mhiData = (float*)(mhi->data.ptr + mhi->step*y);
x = 0;
#if CV_SSE2
if( useSIMD )
{
__m128 ts4 = _mm_set1_ps(ts), db4 = _mm_set1_ps(delbound);
for( ; x <= size.width - 8; x += 8 )
{
__m128i z = _mm_setzero_si128();
__m128i s = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(silhData + x)), z);
__m128 s0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(s, z)), s1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(s, z));
__m128 v0 = _mm_loadu_ps(mhiData + x), v1 = _mm_loadu_ps(mhiData + x + 4);
__m128 fz = _mm_setzero_ps();
v0 = _mm_and_ps(v0, _mm_cmpge_ps(v0, db4));
v1 = _mm_and_ps(v1, _mm_cmpge_ps(v1, db4));
__m128 m0 = _mm_and_ps(_mm_xor_ps(v0, ts4), _mm_cmpneq_ps(s0, fz));
__m128 m1 = _mm_and_ps(_mm_xor_ps(v1, ts4), _mm_cmpneq_ps(s1, fz));
v0 = _mm_xor_ps(v0, m0);
v1 = _mm_xor_ps(v1, m1);
_mm_storeu_ps(mhiData + x, v0);
_mm_storeu_ps(mhiData + x + 4, v1);
}
}
#endif
for( ; x < size.width; x++ )
{
float val = mhiData[x];
val = silhData[x] ? ts : val < delbound ? 0 : val;
mhiData[x] = val;
}
}
}
CV_IMPL void
cvCalcMotionGradient( const CvArr* mhiimg, CvArr* maskimg,
CvArr* orientation,
double delta1, double delta2,
int aperture_size )
{
cv::Ptr<CvMat> dX_min, dY_max;
CvMat mhistub, *mhi = cvGetMat(mhiimg, &mhistub);
CvMat maskstub, *mask = cvGetMat(maskimg, &maskstub);
CvMat orientstub, *orient = cvGetMat(orientation, &orientstub);
CvMat dX_min_row, dY_max_row, orient_row, mask_row;
CvSize size;
int x, y;
float gradient_epsilon = 1e-4f * aperture_size * aperture_size;
float min_delta, max_delta;
if( !CV_IS_MASK_ARR( mask ))
CV_Error( CV_StsBadMask, "" );
if( aperture_size < 3 || aperture_size > 7 || (aperture_size & 1) == 0 )
CV_Error( CV_StsOutOfRange, "aperture_size must be 3, 5 or 7" );
if( delta1 <= 0 || delta2 <= 0 )
CV_Error( CV_StsOutOfRange, "both delta's must be positive" );
if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( orient->type ) != CV_32FC1 )
CV_Error( CV_StsUnsupportedFormat,
"MHI and orientation must be single-channel floating-point images" );
if( !CV_ARE_SIZES_EQ( mhi, mask ) || !CV_ARE_SIZES_EQ( orient, mhi ))
CV_Error( CV_StsUnmatchedSizes, "" );
if( orient->data.ptr == mhi->data.ptr )
CV_Error( CV_StsInplaceNotSupported, "orientation image must be different from MHI" );
if( delta1 > delta2 )
{
double t;
CV_SWAP( delta1, delta2, t );
}
size = cvGetMatSize( mhi );
min_delta = (float)delta1;
max_delta = (float)delta2;
dX_min = cvCreateMat( mhi->rows, mhi->cols, CV_32F );
dY_max = cvCreateMat( mhi->rows, mhi->cols, CV_32F );
// calc Dx and Dy
cvSobel( mhi, dX_min, 1, 0, aperture_size );
cvSobel( mhi, dY_max, 0, 1, aperture_size );
cvGetRow( dX_min, &dX_min_row, 0 );
cvGetRow( dY_max, &dY_max_row, 0 );
cvGetRow( orient, &orient_row, 0 );
cvGetRow( mask, &mask_row, 0 );
// calc gradient
for( y = 0; y < size.height; y++ )
{
dX_min_row.data.ptr = dX_min->data.ptr + y*dX_min->step;
dY_max_row.data.ptr = dY_max->data.ptr + y*dY_max->step;
orient_row.data.ptr = orient->data.ptr + y*orient->step;
mask_row.data.ptr = mask->data.ptr + y*mask->step;
cvCartToPolar( &dX_min_row, &dY_max_row, 0, &orient_row, 1 );
// make orientation zero where the gradient is very small
for( x = 0; x < size.width; x++ )
{
float dY = dY_max_row.data.fl[x];
float dX = dX_min_row.data.fl[x];
if( fabs(dX) < gradient_epsilon && fabs(dY) < gradient_epsilon )
{
mask_row.data.ptr[x] = 0;
orient_row.data.i[x] = 0;
}
else
mask_row.data.ptr[x] = 1;
}
}
cvErode( mhi, dX_min, 0, (aperture_size-1)/2);
cvDilate( mhi, dY_max, 0, (aperture_size-1)/2);
// mask off pixels which have little motion difference in their neighborhood
for( y = 0; y < size.height; y++ )
{
dX_min_row.data.ptr = dX_min->data.ptr + y*dX_min->step;
dY_max_row.data.ptr = dY_max->data.ptr + y*dY_max->step;
mask_row.data.ptr = mask->data.ptr + y*mask->step;
orient_row.data.ptr = orient->data.ptr + y*orient->step;
for( x = 0; x < size.width; x++ )
{
float d0 = dY_max_row.data.fl[x] - dX_min_row.data.fl[x];
if( mask_row.data.ptr[x] == 0 || d0 < min_delta || max_delta < d0 )
{
mask_row.data.ptr[x] = 0;
orient_row.data.i[x] = 0;
}
}
}
}
CV_IMPL double
cvCalcGlobalOrientation( const void* orientation, const void* maskimg, const void* mhiimg,
double curr_mhi_timestamp, double mhi_duration )
{
int hist_size = 12;
cv::Ptr<CvHistogram> hist;
CvMat mhistub, *mhi = cvGetMat(mhiimg, &mhistub);
CvMat maskstub, *mask = cvGetMat(maskimg, &maskstub);
CvMat orientstub, *orient = cvGetMat(orientation, &orientstub);
void* _orient;
float _ranges[] = { 0, 360 };
float* ranges = _ranges;
int base_orient;
float shift_orient = 0, shift_weight = 0;
float a, b, fbase_orient;
float delbound;
CvMat mhi_row, mask_row, orient_row;
int x, y, mhi_rows, mhi_cols;
if( !CV_IS_MASK_ARR( mask ))
CV_Error( CV_StsBadMask, "" );
if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( orient->type ) != CV_32FC1 )
CV_Error( CV_StsUnsupportedFormat,
"MHI and orientation must be single-channel floating-point images" );
if( !CV_ARE_SIZES_EQ( mhi, mask ) || !CV_ARE_SIZES_EQ( orient, mhi ))
CV_Error( CV_StsUnmatchedSizes, "" );
if( mhi_duration <= 0 )
CV_Error( CV_StsOutOfRange, "MHI duration must be positive" );
if( orient->data.ptr == mhi->data.ptr )
CV_Error( CV_StsInplaceNotSupported, "orientation image must be different from MHI" );
// calculate histogram of different orientation values
hist = cvCreateHist( 1, &hist_size, CV_HIST_ARRAY, &ranges );
_orient = orient;
cvCalcArrHist( &_orient, hist, 0, mask );
// find the maximum index (the dominant orientation)
cvGetMinMaxHistValue( hist, 0, 0, 0, &base_orient );
fbase_orient = base_orient*360.f/hist_size;
// override timestamp with the maximum value in MHI
cvMinMaxLoc( mhi, 0, &curr_mhi_timestamp, 0, 0, mask );
// find the shift relative to the dominant orientation as weighted sum of relative angles
a = (float)(254. / 255. / mhi_duration);
b = (float)(1. - curr_mhi_timestamp * a);
delbound = (float)(curr_mhi_timestamp - mhi_duration);
mhi_rows = mhi->rows;
mhi_cols = mhi->cols;
if( CV_IS_MAT_CONT( mhi->type & mask->type & orient->type ))
{
mhi_cols *= mhi_rows;
mhi_rows = 1;
}
cvGetRow( mhi, &mhi_row, 0 );
cvGetRow( mask, &mask_row, 0 );
cvGetRow( orient, &orient_row, 0 );
/*
a = 254/(255*dt)
b = 1 - t*a = 1 - 254*t/(255*dur) =
(255*dt - 254*t)/(255*dt) =
(dt - (t - dt)*254)/(255*dt);
--------------------------------------------------------
ax + b = 254*x/(255*dt) + (dt - (t - dt)*254)/(255*dt) =
(254*x + dt - (t - dt)*254)/(255*dt) =
((x - (t - dt))*254 + dt)/(255*dt) =
(((x - (t - dt))/dt)*254 + 1)/255 = (((x - low_time)/dt)*254 + 1)/255
*/
for( y = 0; y < mhi_rows; y++ )
{
mhi_row.data.ptr = mhi->data.ptr + mhi->step*y;
mask_row.data.ptr = mask->data.ptr + mask->step*y;
orient_row.data.ptr = orient->data.ptr + orient->step*y;
for( x = 0; x < mhi_cols; x++ )
if( mask_row.data.ptr[x] != 0 && mhi_row.data.fl[x] > delbound )
{
/*
orient in 0..360, base_orient in 0..360
-> (rel_angle = orient - base_orient) in -360..360.
rel_angle is translated to -180..180
*/
float weight = mhi_row.data.fl[x] * a + b;
float rel_angle = orient_row.data.fl[x] - fbase_orient;
rel_angle += (rel_angle < -180 ? 360 : 0);
rel_angle += (rel_angle > 180 ? -360 : 0);
if( fabs(rel_angle) < 45 )
{
shift_orient += weight * rel_angle;
shift_weight += weight;
}
}
}
// add the dominant orientation and the relative shift
if( shift_weight == 0 )
shift_weight = 0.01f;
fbase_orient += shift_orient / shift_weight;
fbase_orient -= (fbase_orient < 360 ? 0 : 360);
fbase_orient += (fbase_orient >= 0 ? 0 : 360);
return fbase_orient;
}
CV_IMPL CvSeq*
cvSegmentMotion( const CvArr* mhiimg, CvArr* segmask, CvMemStorage* storage,
double timestamp, double seg_thresh )
{
CvSeq* components = 0;
cv::Ptr<CvMat> mask8u;
CvMat mhistub, *mhi = cvGetMat(mhiimg, &mhistub);
CvMat maskstub, *mask = cvGetMat(segmask, &maskstub);
Cv32suf v, comp_idx;
int stub_val, ts;
int x, y;
if( !storage )
CV_Error( CV_StsNullPtr, "NULL memory storage" );
mhi = cvGetMat( mhi, &mhistub );
mask = cvGetMat( mask, &maskstub );
if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( mask->type ) != CV_32FC1 )
CV_Error( CV_BadDepth, "Both MHI and the destination mask" );
if( !CV_ARE_SIZES_EQ( mhi, mask ))
CV_Error( CV_StsUnmatchedSizes, "" );
mask8u = cvCreateMat( mhi->rows + 2, mhi->cols + 2, CV_8UC1 );
cvZero( mask8u );
cvZero( mask );
components = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq),
sizeof(CvConnectedComp), storage );
v.f = (float)timestamp; ts = v.i;
v.f = FLT_MAX*0.1f; stub_val = v.i;
comp_idx.f = 1;
for( y = 0; y < mhi->rows; y++ )
{
int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
for( x = 0; x < mhi->cols; x++ )
{
if( mhi_row[x] == 0 )
mhi_row[x] = stub_val;
}
}
for( y = 0; y < mhi->rows; y++ )
{
int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
uchar* mask8u_row = mask8u->data.ptr + (y+1)*mask8u->step + 1;
for( x = 0; x < mhi->cols; x++ )
{
if( mhi_row[x] == ts && mask8u_row[x] == 0 )
{
CvConnectedComp comp;
int x1, y1;
CvScalar _seg_thresh = cvRealScalar(seg_thresh);
CvPoint seed = cvPoint(x,y);
cvFloodFill( mhi, seed, cvRealScalar(0), _seg_thresh, _seg_thresh,
&comp, CV_FLOODFILL_MASK_ONLY + 2*256 + 4, mask8u );
for( y1 = 0; y1 < comp.rect.height; y1++ )
{
int* mask_row1 = (int*)(mask->data.ptr +
(comp.rect.y + y1)*mask->step) + comp.rect.x;
uchar* mask8u_row1 = mask8u->data.ptr +
(comp.rect.y + y1+1)*mask8u->step + comp.rect.x+1;
for( x1 = 0; x1 < comp.rect.width; x1++ )
{
if( mask8u_row1[x1] > 1 )
{
mask8u_row1[x1] = 1;
mask_row1[x1] = comp_idx.i;
}
}
}
comp_idx.f++;
cvSeqPush( components, &comp );
}
}
}
for( y = 0; y < mhi->rows; y++ )
{
int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
for( x = 0; x < mhi->cols; x++ )
{
if( mhi_row[x] == stub_val )
mhi_row[x] = 0;
}
}
return components;
}
void cv::updateMotionHistory( InputArray _silhouette, InputOutputArray _mhi,
double timestamp, double duration )
{
Mat silhouette = _silhouette.getMat();
CvMat c_silhouette = silhouette, c_mhi = _mhi.getMat();
cvUpdateMotionHistory( &c_silhouette, &c_mhi, timestamp, duration );
}
void cv::calcMotionGradient( InputArray _mhi, OutputArray _mask,
OutputArray _orientation,
double delta1, double delta2,
int aperture_size )
{
Mat mhi = _mhi.getMat();
_mask.create(mhi.size(), CV_8U);
_orientation.create(mhi.size(), CV_32F);
CvMat c_mhi = mhi, c_mask = _mask.getMat(), c_orientation = _orientation.getMat();
cvCalcMotionGradient(&c_mhi, &c_mask, &c_orientation, delta1, delta2, aperture_size);
}
double cv::calcGlobalOrientation( InputArray _orientation, InputArray _mask,
InputArray _mhi, double timestamp,
double duration )
{
Mat orientation = _orientation.getMat(), mask = _mask.getMat(), mhi = _mhi.getMat();
CvMat c_orientation = orientation, c_mask = mask, c_mhi = mhi;
return cvCalcGlobalOrientation(&c_orientation, &c_mask, &c_mhi, timestamp, duration);
}
void cv::segmentMotion(InputArray _mhi, OutputArray _segmask,
std::vector<Rect>& boundingRects,
double timestamp, double segThresh)
{
Mat mhi = _mhi.getMat();
_segmask.create(mhi.size(), CV_32F);
CvMat c_mhi = mhi, c_segmask = _segmask.getMat();
Ptr<CvMemStorage> storage = cvCreateMemStorage();
Seq<CvConnectedComp> comps = cvSegmentMotion(&c_mhi, &c_segmask, storage, timestamp, segThresh);
Seq<CvConnectedComp>::const_iterator it(comps);
size_t i, ncomps = comps.size();
boundingRects.resize(ncomps);
for( i = 0; i < ncomps; i++, ++it)
boundingRects[i] = (*it).rect;
}
/* End of file. */