opencv/modules/ocl/src/hough.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

404 lines
17 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::ocl;
#if !defined (HAVE_OPENCL)
void cv::ocl::HoughCircles(const oclMat&, oclMat&, int, float, float, int, int, int, int, int) { throw_nogpu(); }
void cv::ocl::HoughCircles(const oclMat&, oclMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_nogpu(); }
void cv::ocl::HoughCirclesDownload(const oclMat&, OutputArray) { throw_nogpu(); }
#else /* !defined (HAVE_OPENCL) */
#define MUL_UP(a, b) ((a)/(b)+1)*(b)
namespace cv { namespace ocl {
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *imgproc_hough;
}}
//////////////////////////////////////////////////////////
// common functions
namespace
{
int buildPointList_gpu(const oclMat& src, oclMat& list)
{
const int PIXELS_PER_THREAD = 16;
int totalCount = 0;
int err = CL_SUCCESS;
cl_mem counter = clCreateBuffer(src.clCxt->impl->clContext,
CL_MEM_COPY_HOST_PTR,
sizeof(int),
&totalCount,
&err);
openCLSafeCall(err);
const size_t blkSizeX = 32;
const size_t blkSizeY = 4;
size_t localThreads[3] = { blkSizeX, blkSizeY, 1 };
const int PIXELS_PER_BLOCK = blkSizeX * PIXELS_PER_THREAD;
const size_t glbSizeX = src.cols % (PIXELS_PER_BLOCK) == 0 ? src.cols : MUL_UP(src.cols, PIXELS_PER_BLOCK);
const size_t glbSizeY = src.rows % blkSizeY == 0 ? src.rows : MUL_UP(src.rows, blkSizeY);
size_t globalThreads[3] = { glbSizeX, glbSizeY, 1 };
std::vector<std::pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&list.data ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&counter ));
openCLExecuteKernel(src.clCxt, &imgproc_hough, "buildPointList", globalThreads, localThreads, args, -1, -1);
openCLSafeCall(clEnqueueReadBuffer(src.clCxt->impl->clCmdQueue, counter, CL_TRUE, 0, sizeof(int), &totalCount, 0, NULL, NULL));
openCLSafeCall(clReleaseMemObject(counter));
return totalCount;
}
}
//////////////////////////////////////////////////////////
// HoughCircles
namespace
{
void circlesAccumCenters_gpu(const oclMat& list, int count, const oclMat& dx, const oclMat& dy, oclMat& accum, int minRadius, int maxRadius, float idp)
{
const size_t blkSizeX = 256;
size_t localThreads[3] = { 256, 1, 1 };
const size_t glbSizeX = count % blkSizeX == 0 ? count : MUL_UP(count, blkSizeX);
size_t globalThreads[3] = { glbSizeX, 1, 1 };
const int width = accum.cols - 2;
const int height = accum.rows - 2;
std::vector<std::pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&list.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&count ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dx.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dx.step ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dy.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dy.step ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&accum.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.step ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&width ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&height ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minRadius));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxRadius));
args.push_back( std::make_pair( sizeof(cl_float), (void *)&idp));
openCLExecuteKernel(accum.clCxt, &imgproc_hough, "circlesAccumCenters", globalThreads, localThreads, args, -1, -1);
}
int buildCentersList_gpu(const oclMat& accum, oclMat& centers, int threshold)
{
int totalCount = 0;
int err = CL_SUCCESS;
cl_mem counter = clCreateBuffer(accum.clCxt->impl->clContext,
CL_MEM_COPY_HOST_PTR,
sizeof(int),
&totalCount,
&err);
openCLSafeCall(err);
const size_t blkSizeX = 32;
const size_t blkSizeY = 8;
size_t localThreads[3] = { blkSizeX, blkSizeY, 1 };
const size_t glbSizeX = (accum.cols - 2) % blkSizeX == 0 ? accum.cols - 2 : MUL_UP(accum.cols - 2, blkSizeX);
const size_t glbSizeY = (accum.rows - 2) % blkSizeY == 0 ? accum.rows - 2 : MUL_UP(accum.rows - 2, blkSizeY);
size_t globalThreads[3] = { glbSizeX, glbSizeY, 1 };
std::vector<std::pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&accum.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.cols ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.rows ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.step ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&centers.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&threshold ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&counter ));
openCLExecuteKernel(accum.clCxt, &imgproc_hough, "buildCentersList", globalThreads, localThreads, args, -1, -1);
openCLSafeCall(clEnqueueReadBuffer(accum.clCxt->impl->clCmdQueue, counter, CL_TRUE, 0, sizeof(int), &totalCount, 0, NULL, NULL));
openCLSafeCall(clReleaseMemObject(counter));
return totalCount;
}
int circlesAccumRadius_gpu(const oclMat& centers, int centersCount,
const oclMat& list, int count,
oclMat& circles, int maxCircles,
float dp, int minRadius, int maxRadius, int threshold)
{
int totalCount = 0;
int err = CL_SUCCESS;
cl_mem counter = clCreateBuffer(circles.clCxt->impl->clContext,
CL_MEM_COPY_HOST_PTR,
sizeof(int),
&totalCount,
&err);
openCLSafeCall(err);
const size_t blkSizeX = circles.clCxt->impl->maxWorkGroupSize;
size_t localThreads[3] = { blkSizeX, 1, 1 };
const size_t glbSizeX = centersCount * blkSizeX;
size_t globalThreads[3] = { glbSizeX, 1, 1 };
const int histSize = maxRadius - minRadius + 1;
size_t smemSize = (histSize + 2) * sizeof(int);
std::vector<std::pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&centers.data ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&list.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&count ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&circles.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxCircles ));
args.push_back( std::make_pair( sizeof(cl_float), (void *)&dp ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minRadius ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxRadius ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&histSize ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&threshold ));
args.push_back( std::make_pair( smemSize , (void *)NULL ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&counter ));
CV_Assert(circles.offset == 0);
openCLExecuteKernel(circles.clCxt, &imgproc_hough, "circlesAccumRadius", globalThreads, localThreads, args, -1, -1);
openCLSafeCall(clEnqueueReadBuffer(circles.clCxt->impl->clCmdQueue, counter, CL_TRUE, 0, sizeof(int), &totalCount, 0, NULL, NULL));
openCLSafeCall(clReleaseMemObject(counter));
totalCount = std::min(totalCount, maxCircles);
return totalCount;
}
} // namespace
void cv::ocl::HoughCircles(const oclMat& src, oclMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
{
HoughCirclesBuf buf;
HoughCircles(src, circles, buf, method, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
}
void cv::ocl::HoughCircles(const oclMat& src, oclMat& circles, HoughCirclesBuf& buf, int method,
float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
{
CV_Assert(src.type() == CV_8UC1);
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
CV_Assert(method == CV_HOUGH_GRADIENT);
CV_Assert(dp > 0);
CV_Assert(minRadius > 0 && maxRadius > minRadius);
CV_Assert(cannyThreshold > 0);
CV_Assert(votesThreshold > 0);
CV_Assert(maxCircles > 0);
const float idp = 1.0f / dp;
cv::ocl::Canny(src, buf.cannyBuf, buf.edges, std::max(cannyThreshold / 2, 1), cannyThreshold);
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.srcPoints);
const int pointsCount = buildPointList_gpu(buf.edges, buf.srcPoints);
if (pointsCount == 0)
{
circles.release();
return;
}
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, buf.accum);
buf.accum.setTo(Scalar::all(0));
circlesAccumCenters_gpu(buf.srcPoints, pointsCount, buf.cannyBuf.dx, buf.cannyBuf.dy, buf.accum, minRadius, maxRadius, idp);
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.centers);
int centersCount = buildCentersList_gpu(buf.accum, buf.centers, votesThreshold);
if (centersCount == 0)
{
circles.release();
return;
}
if (minDist > 1)
{
cv::AutoBuffer<unsigned int> oldBuf_(centersCount);
cv::AutoBuffer<unsigned int> newBuf_(centersCount);
int newCount = 0;
unsigned int* oldBuf = oldBuf_;
unsigned int* newBuf = newBuf_;
openCLSafeCall(clEnqueueReadBuffer(buf.centers.clCxt->impl->clCmdQueue,
(cl_mem)buf.centers.data,
CL_TRUE,
0,
centersCount * sizeof(unsigned int),
oldBuf,
0,
NULL,
NULL));
const int cellSize = cvRound(minDist);
const int gridWidth = (src.cols + cellSize - 1) / cellSize;
const int gridHeight = (src.rows + cellSize - 1) / cellSize;
std::vector< std::vector<unsigned int> > grid(gridWidth * gridHeight);
const float minDist2 = minDist * minDist;
for (int i = 0; i < centersCount; ++i)
{
unsigned int p = oldBuf[i];
const int px = p & 0xFFFF;
const int py = (p >> 16) & 0xFFFF;
bool good = true;
int xCell = static_cast<int>(px / cellSize);
int yCell = static_cast<int>(py / cellSize);
int x1 = xCell - 1;
int y1 = yCell - 1;
int x2 = xCell + 1;
int y2 = yCell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(gridWidth - 1, x2);
y2 = std::min(gridHeight - 1, y2);
for (int yy = y1; yy <= y2; ++yy)
{
for (int xx = x1; xx <= x2; ++xx)
{
std::vector<unsigned int>& m = grid[yy * gridWidth + xx];
for(size_t j = 0; j < m.size(); ++j)
{
const int val = m[j];
const int jx = val & 0xFFFF;
const int jy = (val >> 16) & 0xFFFF;
float dx = (float)(px - jx);
float dy = (float)(py - jy);
if (dx * dx + dy * dy < minDist2)
{
good = false;
goto break_out;
}
}
}
}
break_out:
if(good)
{
grid[yCell * gridWidth + xCell].push_back(p);
newBuf[newCount++] = p;
}
}
openCLSafeCall(clEnqueueWriteBuffer(buf.centers.clCxt->impl->clCmdQueue,
(cl_mem)buf.centers.data,
CL_TRUE,
0,
newCount * sizeof(unsigned int),
newBuf,
0,
0,
0));
centersCount = newCount;
}
ensureSizeIsEnough(1, maxCircles, CV_32FC3, circles);
const int circlesCount = circlesAccumRadius_gpu(buf.centers, centersCount,
buf.srcPoints, pointsCount,
circles, maxCircles,
dp, minRadius, maxRadius, votesThreshold);
if (circlesCount > 0)
circles.cols = circlesCount;
else
circles.release();
}
void cv::ocl::HoughCirclesDownload(const oclMat& d_circles, cv::OutputArray h_circles_)
{
// FIX ME: garbage values are copied!
CV_Error(CV_StsNotImplemented, "HoughCirclesDownload is not implemented");
if (d_circles.empty())
{
h_circles_.release();
return;
}
CV_Assert(d_circles.rows == 1 && d_circles.type() == CV_32FC3);
h_circles_.create(1, d_circles.cols, CV_32FC3);
Mat h_circles = h_circles_.getMat();
d_circles.download(h_circles);
}
#endif /* !defined (HAVE_OPENCL) */