opencv/modules/ocl/src/stereobp.cpp

662 lines
29 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jia Haipeng, jiahaipeng95@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <vector>
using namespace cv;
using namespace cv::ocl;
using namespace std;
////////////////////////////////////////////////////////////////////////
///////////////// stereoBP /////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
#if !defined (HAVE_OPENCL)
namespace cv
{
namespace ocl
{
void cv::ocl::StereoBeliefPropagation::estimateRecommendedParams(int, int, int &, int &, int &)
{
throw_nogpu();
}
cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int)
{
throw_nogpu();
}
cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int)
{
throw_nogpu();
}
void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &, const oclMat &, oclMat &)
{
throw_nogpu();
}
void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &, oclMat &)
{
throw_nogpu();
}
}
}
#else /* !defined (HAVE_OPENCL) */
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *stereobp;
}
}
namespace cv
{
namespace ocl
{
namespace stereoBP
{
//////////////////////////////////////////////////////////////////////////
//////////////////////////////common////////////////////////////////////
////////////////////////////////////////////////////////////////////////
typedef struct
{
int cndisp;
float cmax_data_term;
float cdata_weight;
float cmax_disc_term;
float cdisc_single_jump;
} con_struct_t;
cl_mem cl_con_struct = NULL;
void load_constants(Context *clCxt, int ndisp, float max_data_term, float data_weight,
float max_disc_term, float disc_single_jump)
{
con_struct_t *con_struct = new con_struct_t;
con_struct -> cndisp = ndisp;
con_struct -> cmax_data_term = max_data_term;
con_struct -> cdata_weight = data_weight;
con_struct -> cmax_disc_term = max_data_term;
con_struct -> cdisc_single_jump = disc_single_jump;
cl_con_struct = load_constant(clCxt->impl->clContext, clCxt->impl->clCmdQueue, (void *)con_struct,
sizeof(con_struct_t));
delete con_struct;
}
void release_constants()
{
openCLFree(cl_con_struct);
}
static inline int divUp(int total, int grain)
{
return (total + grain - 1) / grain;
}
/////////////////////////////////////////////////////////////////////////////
///////////////////////////comp data////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
void comp_data_call(const oclMat &left, const oclMat &right, oclMat &data, int disp, float cmax_data_term, float cdata_weight)
{
Context *clCxt = left.clCxt;
int channels = left.channels();
int data_type = data.type();
string kernelName = "comp_data_";
stringstream idxStr;
if(data_type == CV_16S)
idxStr << "0";
else
idxStr << "1";
kernelName += idxStr.str();
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &stereobp, kernelName);
size_t blockSize = 32;
size_t localThreads[] = {32, 8};
size_t globalThreads[] = {divUp(left.cols, localThreads[0]) * localThreads[0],
divUp(left.rows, localThreads[1]) * localThreads[1]
};
openCLVerifyKernel(clCxt, kernel, &blockSize, globalThreads, localThreads);
openCLSafeCall(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&left.data));
openCLSafeCall(clSetKernelArg(kernel, 1, sizeof(cl_int), (void *)&left.rows));
openCLSafeCall(clSetKernelArg(kernel, 2, sizeof(cl_int), (void *)&left.cols));
openCLSafeCall(clSetKernelArg(kernel, 3, sizeof(cl_int), (void *)&left.step));
openCLSafeCall(clSetKernelArg(kernel, 4, sizeof(cl_mem), (void *)&right.data));
openCLSafeCall(clSetKernelArg(kernel, 5, sizeof(cl_int), (void *)&right.step));
openCLSafeCall(clSetKernelArg(kernel, 6, sizeof(cl_mem), (void *)&data.data));
openCLSafeCall(clSetKernelArg(kernel, 7, sizeof(cl_int), (void *)&data.cols));
openCLSafeCall(clSetKernelArg(kernel, 8, sizeof(cl_int), (void *)&data.step));
openCLSafeCall(clSetKernelArg(kernel, 9, sizeof(cl_mem), (void *)&cl_con_struct));
//openCLSafeCall(clSetKernelArg(kernel,12,sizeof(cl_int),(void*)&disp));
//openCLSafeCall(clSetKernelArg(kernel,13,sizeof(cl_float),(void*)&cmax_data_term));
//openCLSafeCall(clSetKernelArg(kernel,14,sizeof(cl_float),(void*)&cdata_weight));
openCLSafeCall(clSetKernelArg(kernel, 10, sizeof(cl_int), (void *)&channels));
openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 2, NULL,
globalThreads, localThreads, 0, NULL, NULL));
clFinish(clCxt->impl->clCmdQueue);
openCLSafeCall(clReleaseKernel(kernel));
}
///////////////////////////////////////////////////////////////////////////////////
/////////////////////////data set down////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
void data_step_down_call(int dst_cols, int dst_rows, int src_rows,
const oclMat &src, oclMat &dst, int disp)
{
Context *clCxt = src.clCxt;
int data_type = src.type();
string kernelName = "data_step_down_";
stringstream idxStr;
if(data_type == CV_16S)
idxStr << "0";
else
idxStr << "1";
kernelName += idxStr.str();
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &stereobp, kernelName);
size_t blockSize = 32;
size_t localThreads[] = {32, 8};
size_t globalThreads[] = {divUp(dst_cols, localThreads[0]) * localThreads[0],
divUp(dst_rows, localThreads[1]) * localThreads[1]
};
openCLVerifyKernel(clCxt, kernel, &blockSize, globalThreads, localThreads);
openCLSafeCall(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&src.data));
openCLSafeCall(clSetKernelArg(kernel, 1, sizeof(cl_int), (void *)&src_rows));
openCLSafeCall(clSetKernelArg(kernel, 2, sizeof(cl_int), (void *)&src.cols));
openCLSafeCall(clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&dst.data));
openCLSafeCall(clSetKernelArg(kernel, 4, sizeof(cl_int), (void *)&dst_rows));
openCLSafeCall(clSetKernelArg(kernel, 5, sizeof(cl_int), (void *)&dst_cols));
openCLSafeCall(clSetKernelArg(kernel, 6, sizeof(cl_int), (void *)&dst.cols));
openCLSafeCall(clSetKernelArg(kernel, 7, sizeof(cl_int), (void *)&disp));
openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 2, NULL,
globalThreads, localThreads, 0, NULL, NULL));
clFinish(clCxt->impl->clCmdQueue);
openCLSafeCall(clReleaseKernel(kernel));
}
/////////////////////////////////////////////////////////////////////////////////
///////////////////////////live up message////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
void level_up_message_call(int dst_idx, int dst_cols, int dst_rows, int src_rows,
oclMat &src, oclMat &dst, int ndisp)
{
Context *clCxt = src.clCxt;
int data_type = src.type();
string kernelName = "level_up_message_";
stringstream idxStr;
if(data_type == CV_16S)
idxStr << "0";
else
idxStr << "1";
kernelName += idxStr.str();
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &stereobp, kernelName);
size_t blockSize = 32;
size_t localThreads[] = {32, 8};
size_t globalThreads[] = {divUp(dst_cols, localThreads[0]) * localThreads[0],
divUp(dst_rows, localThreads[1]) * localThreads[1]
};
openCLVerifyKernel(clCxt, kernel, &blockSize, globalThreads, localThreads);
openCLSafeCall(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&src.data));
openCLSafeCall(clSetKernelArg(kernel, 1, sizeof(cl_int), (void *)&src_rows));
openCLSafeCall(clSetKernelArg(kernel, 2, sizeof(cl_int), (void *)&src.step));
openCLSafeCall(clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&dst.data));
openCLSafeCall(clSetKernelArg(kernel, 4, sizeof(cl_int), (void *)&dst_rows));
openCLSafeCall(clSetKernelArg(kernel, 5, sizeof(cl_int), (void *)&dst_cols));
openCLSafeCall(clSetKernelArg(kernel, 6, sizeof(cl_int), (void *)&dst.step));
openCLSafeCall(clSetKernelArg(kernel, 7, sizeof(cl_int), (void *)&ndisp));
openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 2, NULL,
globalThreads, localThreads, 0, NULL, NULL));
clFinish(clCxt->impl->clCmdQueue);
openCLSafeCall(clReleaseKernel(kernel));
}
void level_up_messages_calls(int dst_idx, int dst_cols, int dst_rows, int src_rows,
oclMat *mus, oclMat *mds, oclMat *mls, oclMat *mrs,
int ndisp)
{
int src_idx = (dst_idx + 1) & 1;
level_up_message_call(dst_idx, dst_cols, dst_rows, src_rows,
mus[src_idx], mus[dst_idx], ndisp);
level_up_message_call(dst_idx, dst_cols, dst_rows, src_rows,
mds[src_idx], mds[dst_idx], ndisp);
level_up_message_call(dst_idx, dst_cols, dst_rows, src_rows,
mls[src_idx], mls[dst_idx], ndisp);
level_up_message_call(dst_idx, dst_cols, dst_rows, src_rows,
mrs[src_idx], mrs[dst_idx], ndisp);
}
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////cals_all_iterations_call///////////////////////////
/////////////////////////////////////////////////////////////////////////////////
void calc_all_iterations_call(int cols, int rows, oclMat &u, oclMat &d,
oclMat &l, oclMat &r, oclMat &data,
int t, int cndisp, float cmax_disc_term,
float cdisc_single_jump)
{
Context *clCxt = l.clCxt;
int data_type = u.type();
string kernelName = "one_iteration_";
stringstream idxStr;
if(data_type == CV_16S)
idxStr << "0";
else
idxStr << "1";
kernelName += idxStr.str();
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &stereobp, kernelName);
size_t blockSize = 32;
size_t localThreads[] = {32, 8};
size_t globalThreads[] = {divUp(cols, (localThreads[0] << 1)) * (localThreads[0] << 1),
divUp(rows, localThreads[1]) * localThreads[1]
};
openCLVerifyKernel(clCxt, kernel, &blockSize, globalThreads, localThreads);
openCLSafeCall(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&u.data));
openCLSafeCall(clSetKernelArg(kernel, 1, sizeof(cl_int), (void *)&u.step));
openCLSafeCall(clSetKernelArg(kernel, 2, sizeof(cl_int), (void *)&u.cols));
openCLSafeCall(clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&data.data));
openCLSafeCall(clSetKernelArg(kernel, 4, sizeof(cl_int), (void *)&data.step));
openCLSafeCall(clSetKernelArg(kernel, 5, sizeof(cl_int), (void *)&data.cols));
openCLSafeCall(clSetKernelArg(kernel, 6, sizeof(cl_mem), (void *)&d.data));
openCLSafeCall(clSetKernelArg(kernel, 7, sizeof(cl_mem), (void *)&l.data));
openCLSafeCall(clSetKernelArg(kernel, 8, sizeof(cl_mem), (void *)&r.data));
openCLSafeCall(clSetKernelArg(kernel, 9, sizeof(cl_int), (void *)&t));
openCLSafeCall(clSetKernelArg(kernel, 10, sizeof(cl_int), (void *)&cols));
openCLSafeCall(clSetKernelArg(kernel, 11, sizeof(cl_int), (void *)&rows));
openCLSafeCall(clSetKernelArg(kernel, 12, sizeof(cl_int), (void *)&cndisp));
openCLSafeCall(clSetKernelArg(kernel, 13, sizeof(cl_float), (void *)&cmax_disc_term));
openCLSafeCall(clSetKernelArg(kernel, 14, sizeof(cl_float), (void *)&cdisc_single_jump));
openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 2, NULL,
globalThreads, localThreads, 0, NULL, NULL));
clFinish(clCxt->impl->clCmdQueue);
openCLSafeCall(clReleaseKernel(kernel));
}
void calc_all_iterations_calls(int cols, int rows, int iters, oclMat &u,
oclMat &d, oclMat &l, oclMat &r,
oclMat &data, int cndisp, float cmax_disc_term,
float cdisc_single_jump)
{
for(int t = 0; t < iters; ++t)
calc_all_iterations_call(cols, rows, u, d, l, r, data, t, cndisp,
cmax_disc_term, cdisc_single_jump);
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////output///////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
void output_call(const oclMat &u, const oclMat &d, const oclMat l, const oclMat &r,
const oclMat &data, oclMat &disp, int ndisp)
{
Context *clCxt = u.clCxt;
int data_type = u.type();
string kernelName = "output_";
stringstream idxStr;
if(data_type == CV_16S)
idxStr << "0";
else
idxStr << "1";
kernelName += idxStr.str();
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &stereobp, kernelName);
size_t blockSize = 32;
size_t localThreads[] = {32, 8};
size_t globalThreads[] = {divUp(disp.cols, localThreads[0]) * localThreads[0],
divUp(disp.rows, localThreads[1]) * localThreads[1]
};
openCLVerifyKernel(clCxt, kernel, &blockSize, globalThreads, localThreads);
openCLSafeCall(clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&u.data));
openCLSafeCall(clSetKernelArg(kernel, 1, sizeof(cl_int), (void *)&u.step));
openCLSafeCall(clSetKernelArg(kernel, 2, sizeof(cl_int), (void *)&u.cols));
openCLSafeCall(clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&d.data));
openCLSafeCall(clSetKernelArg(kernel, 4, sizeof(cl_mem), (void *)&l.data));
openCLSafeCall(clSetKernelArg(kernel, 5, sizeof(cl_mem), (void *)&r.data));
openCLSafeCall(clSetKernelArg(kernel, 6, sizeof(cl_mem), (void *)&data.data));
openCLSafeCall(clSetKernelArg(kernel, 7, sizeof(cl_mem), (void *)&disp.data));
openCLSafeCall(clSetKernelArg(kernel, 8, sizeof(cl_int), (void *)&disp.rows));
openCLSafeCall(clSetKernelArg(kernel, 9, sizeof(cl_int), (void *)&disp.cols));
openCLSafeCall(clSetKernelArg(kernel, 10, sizeof(cl_int), (void *)&disp.step));
openCLSafeCall(clSetKernelArg(kernel, 11, sizeof(cl_int), (void *)&ndisp));
openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 2, NULL,
globalThreads, localThreads, 0, NULL, NULL));
clFinish(clCxt->impl->clCmdQueue);
openCLSafeCall(clReleaseKernel(kernel));
}
}
}
}
namespace
{
const float DEFAULT_MAX_DATA_TERM = 10.0f;
const float DEFAULT_DATA_WEIGHT = 0.07f;
const float DEFAULT_MAX_DISC_TERM = 1.7f;
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
template<typename T>
void print_gpu_mat(const oclMat &mat)
{
T *data_1 = new T[mat.rows * mat.cols * mat.channels()];
Context *clCxt = mat.clCxt;
int status = clEnqueueReadBuffer(clCxt -> impl-> clCmdQueue, (cl_mem)mat.data, CL_TRUE, 0,
mat.rows * mat.cols * mat.channels() * sizeof(T), data_1, 0, NULL, NULL);
if(status != CL_SUCCESS)
cout << "error " << status << endl;
cout << ".........................................................." << endl;
cout << "elemSize() " << mat.elemSize() << endl;
cout << "elemSize() " << mat.elemSize1() << endl;
cout << "channels: " << mat.channels() << endl;
cout << "rows: " << mat.rows << endl;
cout << "cols: " << mat.cols << endl;
for(int i = 0; i < 30; i++)
{
for(int j = 0; j < 30; j++)
{
cout << (int)data_1[i * mat.cols * mat.channels() + j] << " ";
}
cout << endl;
}
}
}
void cv::ocl::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels)
{
ndisp = width / 4;
if ((ndisp & 1) != 0)
ndisp++;
int mm = ::max(width, height);
iters = mm / 100 + 2;
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
if (levels == 0) levels++;
}
cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_),
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP),
msg_type(msg_type_), datas(levels_)
{
}
cv::ocl::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_),
max_data_term(max_data_term_), data_weight(data_weight_),
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_),
msg_type(msg_type_), datas(levels_)
{
}
namespace
{
class StereoBeliefPropagationImpl
{
public:
StereoBeliefPropagationImpl(StereoBeliefPropagation &rthis_,
oclMat &u_, oclMat &d_, oclMat &l_, oclMat &r_,
oclMat &u2_, oclMat &d2_, oclMat &l2_, oclMat &r2_,
vector<oclMat>& datas_, oclMat &out_)
: rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_),
zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f)
{
CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels);
CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S);
CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < numeric_limits<short>::max());
}
void operator()(const oclMat &left, const oclMat &right, oclMat &disp)
{
CV_Assert(left.size() == right.size() && left.type() == right.type());
CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4);
rows = left.rows;
cols = left.cols;
int divisor = (int)pow(2.f, rthis.levels - 1.0f);
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 2;
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
init();
datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type);
datas[0].setTo(Scalar_<short>::all(0));
cv::ocl::stereoBP::comp_data_call(left, right, datas[0], rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight);
calcBP(disp);
}
void operator()(const oclMat &data, oclMat &disp)
{
CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0));
rows = data.rows / rthis.ndisp;
cols = data.cols;
int divisor = (int)pow(2.f, rthis.levels - 1.0f);
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 2;
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
init();
datas[0] = data;
calcBP(disp);
}
private:
void init()
{
u.create(rows * rthis.ndisp, cols, rthis.msg_type);
d.create(rows * rthis.ndisp, cols, rthis.msg_type);
l.create(rows * rthis.ndisp, cols, rthis.msg_type);
r.create(rows * rthis.ndisp, cols, rthis.msg_type);
if (rthis.levels & 1)
{
//can clear less area
u = zero;
d = zero;
l = zero;
r = zero;
}
if (rthis.levels > 1)
{
int less_rows = (rows + 1) / 2;
int less_cols = (cols + 1) / 2;
u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
if ((rthis.levels & 1) == 0)
{
u2 = zero;
d2 = zero;
l2 = zero;
r2 = zero;
}
}
cv::ocl::stereoBP::load_constants(u.clCxt, rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight,
scale * rthis.max_disc_term, scale * rthis.disc_single_jump);
datas.resize(rthis.levels);
cols_all.resize(rthis.levels);
rows_all.resize(rthis.levels);
cols_all[0] = cols;
rows_all[0] = rows;
}
void calcBP(oclMat &disp)
{
using namespace cv::ocl::stereoBP;
for (int i = 1; i < rthis.levels; ++i)
{
cols_all[i] = (cols_all[i-1] + 1) / 2;
rows_all[i] = (rows_all[i-1] + 1) / 2;
datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type);
datas[i].setTo(Scalar_<short>::all(0));
data_step_down_call(cols_all[i], rows_all[i], rows_all[i-1],
datas[i-1], datas[i], rthis.ndisp);
}
oclMat mus[] = {u, u2};
oclMat mds[] = {d, d2};
oclMat mrs[] = {r, r2};
oclMat mls[] = {l, l2};
int mem_idx = (rthis.levels & 1) ? 0 : 1;
for (int i = rthis.levels - 1; i >= 0; --i)
{
// for lower level we have already computed messages by setting to zero
if (i != rthis.levels - 1)
level_up_messages_calls(mem_idx, cols_all[i], rows_all[i], rows_all[i+1],
mus, mds, mls, mrs, rthis.ndisp);
calc_all_iterations_calls(cols_all[i], rows_all[i], rthis.iters, mus[mem_idx],
mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i],
rthis.ndisp, scale * rthis.max_disc_term,
scale * rthis.disc_single_jump);
mem_idx = (mem_idx + 1) & 1;
}
if (disp.empty())
disp.create(rows, cols, CV_16S);
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));
out = zero;
output_call(u, d, l, r, datas.front(), out, rthis.ndisp);
if (disp.type() != CV_16S)
out.convertTo(disp, disp.type());
release_constants();
}
StereoBeliefPropagation &rthis;
oclMat &u;
oclMat &d;
oclMat &l;
oclMat &r;
oclMat &u2;
oclMat &d2;
oclMat &l2;
oclMat &r2;
vector<oclMat>& datas;
oclMat &out;
const Scalar zero;
const float scale;
int rows, cols;
vector<int> cols_all, rows_all;
};
}
void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &left, const oclMat &right, oclMat &disp)
{
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
impl(left, right, disp);
}
void cv::ocl::StereoBeliefPropagation::operator()(const oclMat &data, oclMat &disp)
{
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
impl(data, disp);
}
#endif /* !defined (HAVE_OPENCL) */