opencv/modules/imgproc/src/spatialgradient.cpp
Seon-Wook Park 6803d1ed28 Support non continuous, BORDER_REPLICATE
TODO: HAL-accelerated code
2015-06-26 14:49:31 +02:00

245 lines
8.4 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/hal/intrin.hpp"
namespace cv
{
void spatialGradient( InputArray _src, OutputArray _dx, OutputArray _dy,
int ksize, int borderType )
{
// Prepare InputArray src
Mat src = _src.getMat();
CV_Assert( !src.empty() );
CV_Assert( src.type() == CV_8UC1 );
CV_Assert( borderType == BORDER_DEFAULT || borderType == BORDER_REPLICATE );
// Prepare OutputArrays dx, dy
_dx.create( src.size(), CV_16SC1 );
_dy.create( src.size(), CV_16SC1 );
Mat dx = _dx.getMat(),
dy = _dy.getMat();
// TODO: Allow for other kernel sizes
CV_Assert(ksize == 3);
// Get dimensions
const int H = src.rows,
W = src.cols;
// Row, column indices
int i, j;
// Store pointers to rows of input/output data
// Padded by two rows for border handling
uchar* P_src[H+2];
short* P_dx [H+2];
short* P_dy [H+2];
int i_top = 0, // Case for H == 1 && W == 1 && BORDER_REPLICATE
i_bottom = H - 1,
j_offl = 0, // j offset from 0th pixel to reach -1st pixel
j_offr = 0; // j offset from W-1th pixel to reach Wth pixel
if ( borderType == BORDER_DEFAULT ) // Equiv. to BORDER_REFLECT_101
{
if ( H > 1 )
{
i_top = 1;
i_bottom = H - 2;
}
if ( W > 1 )
{
j_offl = 1;
j_offr = -1;
}
}
P_src[0] = src.ptr<uchar>(i_top); // Mirrored top border
P_src[H+1] = src.ptr<uchar>(i_bottom); // Mirrored bottom border
for ( i = 0; i < H; i++ )
{
P_src[i+1] = src.ptr<uchar>(i);
P_dx [i] = dx.ptr<short>(i);
P_dy [i] = dy.ptr<short>(i);
}
// Pointer to row vectors
uchar *p_src, *c_src, *n_src; // previous, current, next row
short *c_dx, *c_dy;
int j_start = 0;
/*
#if CV_SIMD128
// Characters in variable names have the following meanings:
// u: unsigned char
// s: signed int
//
// [row][column]
// m: offset -1
// n: offset 0
// p: offset 1
// Example: umn is offset -1 in row and offset 0 in column
v_uint8x16 v_um, v_un, v_up;
v_uint16x8 v_um1, v_um2, v_un1, v_un2, v_up1, v_up2;
v_int16x8 v_smm1, v_smm2, v_smn1, v_smn2, v_smp1, v_smp2,
v_snm1, v_snm2, v_snn1, v_snn2, v_snp1, v_snp2,
v_spm1, v_spm2, v_spn1, v_spn2, v_spp1, v_spp2,
v_two = v_setall_s16(2),
v_sdx1, v_sdx2, v_sdy1, v_sdy2;
for ( i = 1; i < H - 1; i++ )
{
// 16-column chunks at a time
for ( j = 1; j < W - 1 - 15; j += 16 )
{
// Load top row for 3x3 Sobel filter
idx = i*W + j;
v_um = v_load(&p_src[idx - W - 1]);
v_un = v_load(&p_src[idx - W]);
v_up = v_load(&p_src[idx - W + 1]);
v_expand(v_um, v_um1, v_um2);
v_expand(v_un, v_un1, v_un2);
v_expand(v_up, v_up1, v_up2);
v_smm1 = v_reinterpret_as_s16(v_um1);
v_smm2 = v_reinterpret_as_s16(v_um2);
v_smn1 = v_reinterpret_as_s16(v_un1);
v_smn2 = v_reinterpret_as_s16(v_un2);
v_smp1 = v_reinterpret_as_s16(v_up1);
v_smp2 = v_reinterpret_as_s16(v_up2);
// Load second row for 3x3 Sobel filter
v_um = v_load(&p_src[idx - 1]);
v_un = v_load(&p_src[idx]);
v_up = v_load(&p_src[idx + 1]);
v_expand(v_um, v_um1, v_um2);
v_expand(v_un, v_un1, v_un2);
v_expand(v_up, v_up1, v_up2);
v_snm1 = v_reinterpret_as_s16(v_um1);
v_snm2 = v_reinterpret_as_s16(v_um2);
v_snn1 = v_reinterpret_as_s16(v_un1);
v_snn2 = v_reinterpret_as_s16(v_un2);
v_snp1 = v_reinterpret_as_s16(v_up1);
v_snp2 = v_reinterpret_as_s16(v_up2);
// Load last row for 3x3 Sobel filter
v_um = v_load(&p_src[idx + W - 1]);
v_un = v_load(&p_src[idx + W]);
v_up = v_load(&p_src[idx + W + 1]);
v_expand(v_um, v_um1, v_um2);
v_expand(v_un, v_un1, v_un2);
v_expand(v_up, v_up1, v_up2);
v_spm1 = v_reinterpret_as_s16(v_um1);
v_spm2 = v_reinterpret_as_s16(v_um2);
v_spn1 = v_reinterpret_as_s16(v_un1);
v_spn2 = v_reinterpret_as_s16(v_un2);
v_spp1 = v_reinterpret_as_s16(v_up1);
v_spp2 = v_reinterpret_as_s16(v_up2);
// dx
v_sdx1 = (v_smp1 - v_smm1) + v_two*(v_snp1 - v_snm1) + (v_spp1 - v_spm1);
v_sdx2 = (v_smp2 - v_smm2) + v_two*(v_snp2 - v_snm2) + (v_spp2 - v_spm2);
// dy
v_sdy1 = (v_spm1 - v_smm1) + v_two*(v_spn1 - v_smn1) + (v_spp1 - v_smp1);
v_sdy2 = (v_spm2 - v_smm2) + v_two*(v_spn2 - v_smn2) + (v_spp2 - v_smp2);
// Store
v_store(&p_dx[idx], v_sdx1);
v_store(&p_dx[idx+8], v_sdx2);
v_store(&p_dy[idx], v_sdy1);
v_store(&p_dy[idx+8], v_sdy2);
}
// Cleanup
for ( ; j < W - 1; j++ )
{
idx = i*W + j;
p_dx[idx] = -(p_src[idx-W-1] + 2*p_src[idx-1] + p_src[idx+W-1]) +
(p_src[idx-W+1] + 2*p_src[idx+1] + p_src[idx+W+1]);
p_dy[idx] = -(p_src[idx-W-1] + 2*p_src[idx-W] + p_src[idx-W+1]) +
(p_src[idx+W-1] + 2*p_src[idx+W] + p_src[idx+W+1]);
}
}
#else
*/
/* NOTE:
*
* Sobel-x: -1 0 1
* -2 0 2
* -1 0 1
*
* Sobel-y: -1 -2 -1
* 0 0 0
* 1 2 1
*/
int j_p, j_n;
for ( i = 0; i < H; i++ )
{
p_src = P_src[i]; c_src = P_src[i+1]; n_src = P_src[i+2];
c_dx = P_dx [i];
c_dy = P_dy [i];
for ( j = j_start; j < W; j++ )
{
j_p = j - 1;
j_n = j + 1;
if ( j_p < 0 ) j_p = j + j_offl;
if ( j_n >= W ) j_n = j + j_offr;
c_dx[j] = -(p_src[j_p] + c_src[j_p] + c_src[j_p] + n_src[j_p]) +
(p_src[j_n] + c_src[j_n] + c_src[j_n] + n_src[j_n]);
c_dy[j] = -(p_src[j_p] + p_src[j] + p_src[j] + p_src[j_n]) +
(n_src[j_p] + n_src[j] + n_src[j] + n_src[j_n]);
}
}
//#endif
}
}