[GSOC] Speeding-up AKAZE, part #1 (#8869) * ts: expand arguments before stringifications in CV_ENUM and CV_FLAGS added protective macros to always force macro expansion of arguments. This allows using CV_ENUM and CV_FLAGS with macro arguments. * feature2d: unify perf test use the same test for all detectors/descriptors we have. * added AKAZE tests * features2d: extend perf tests * add BRISK, KAZE, MSER * run all extract tests on AKAZE keypoints, so that the test si more comparable for the speed of extraction * feature2d: rework opencl perf tests use the same configuration as cpu tests * feature2d: fix descriptors allocation for AKAZE and KAZE fix crash when descriptors are UMat * feature2d: name enum to fix build with older gcc * Revert "ts: expand arguments before stringifications in CV_ENUM and CV_FLAGS" This reverts commit 19538cac1e45b0cec98190cf06a5ecb07d9b596e. This wasn't a great idea after all. There is a lot of flags implemented as #define, that we don't want to expand. * feature2d: fix expansion problems with CV_ENUM in perf * expand arguments before passing them to CV_ENUM. This does not need modifications of CV_ENUM. * added include guards to `perf_feature2d.hpp` * feature2d: fix crash in AKAZE when using KAZE descriptors * out-of-bound access in Get_MSURF_Descriptor_64 * this happened reliably when running on provided keypoints (not computed by the same instance) * feature2d: added regression tests for AKAZE * test with both MLDB and KAZE keypoints * feature2d: do not compute keypoints orientation twice * always compute keypoints orientation, when computing keypoints * do not recompute keypoint orientation when computing descriptors this allows to test detection and extraction separately * features2d: fix crash in AKAZE * out-of-bound reads near the image edge * same as the bug in KAZE descriptors * feature2d: refactor invariance testing * split detectors and descriptors tests * rewrite to google test to simplify debugging * add tests for AKAZE and one test for ORB * stitching: add tests with AKAZE feature finder * added basic stitching cpu and ocl tests * fix bug in AKAZE wrapper for stitching pipeline causing lots of ! OPENCV warning: getUMat()/getMat() call chain possible problem. ! Base object is dead, while nested/derived object is still alive or processed. ! Please check lifetime of UMat/Mat objects!
264 lines
9.1 KiB
C++
264 lines
9.1 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/*
|
|
OpenCV wrapper of reference implementation of
|
|
[1] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces.
|
|
Pablo F. Alcantarilla, J. Nuevo and Adrien Bartoli.
|
|
In British Machine Vision Conference (BMVC), Bristol, UK, September 2013
|
|
http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pdf
|
|
@author Eugene Khvedchenya <ekhvedchenya@gmail.com>
|
|
*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "kaze/AKAZEFeatures.h"
|
|
|
|
#include <iostream>
|
|
|
|
namespace cv
|
|
{
|
|
using namespace std;
|
|
|
|
class AKAZE_Impl : public AKAZE
|
|
{
|
|
public:
|
|
AKAZE_Impl(int _descriptor_type, int _descriptor_size, int _descriptor_channels,
|
|
float _threshold, int _octaves, int _sublevels, int _diffusivity)
|
|
: descriptor(_descriptor_type)
|
|
, descriptor_channels(_descriptor_channels)
|
|
, descriptor_size(_descriptor_size)
|
|
, threshold(_threshold)
|
|
, octaves(_octaves)
|
|
, sublevels(_sublevels)
|
|
, diffusivity(_diffusivity)
|
|
{
|
|
}
|
|
|
|
virtual ~AKAZE_Impl()
|
|
{
|
|
|
|
}
|
|
|
|
void setDescriptorType(int dtype) { descriptor = dtype; }
|
|
int getDescriptorType() const { return descriptor; }
|
|
|
|
void setDescriptorSize(int dsize) { descriptor_size = dsize; }
|
|
int getDescriptorSize() const { return descriptor_size; }
|
|
|
|
void setDescriptorChannels(int dch) { descriptor_channels = dch; }
|
|
int getDescriptorChannels() const { return descriptor_channels; }
|
|
|
|
void setThreshold(double threshold_) { threshold = (float)threshold_; }
|
|
double getThreshold() const { return threshold; }
|
|
|
|
void setNOctaves(int octaves_) { octaves = octaves_; }
|
|
int getNOctaves() const { return octaves; }
|
|
|
|
void setNOctaveLayers(int octaveLayers_) { sublevels = octaveLayers_; }
|
|
int getNOctaveLayers() const { return sublevels; }
|
|
|
|
void setDiffusivity(int diff_) { diffusivity = diff_; }
|
|
int getDiffusivity() const { return diffusivity; }
|
|
|
|
// returns the descriptor size in bytes
|
|
int descriptorSize() const
|
|
{
|
|
switch (descriptor)
|
|
{
|
|
case DESCRIPTOR_KAZE:
|
|
case DESCRIPTOR_KAZE_UPRIGHT:
|
|
return 64;
|
|
|
|
case DESCRIPTOR_MLDB:
|
|
case DESCRIPTOR_MLDB_UPRIGHT:
|
|
// We use the full length binary descriptor -> 486 bits
|
|
if (descriptor_size == 0)
|
|
{
|
|
int t = (6 + 36 + 120) * descriptor_channels;
|
|
return (int)ceil(t / 8.);
|
|
}
|
|
else
|
|
{
|
|
// We use the random bit selection length binary descriptor
|
|
return (int)ceil(descriptor_size / 8.);
|
|
}
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// returns the descriptor type
|
|
int descriptorType() const
|
|
{
|
|
switch (descriptor)
|
|
{
|
|
case DESCRIPTOR_KAZE:
|
|
case DESCRIPTOR_KAZE_UPRIGHT:
|
|
return CV_32F;
|
|
|
|
case DESCRIPTOR_MLDB:
|
|
case DESCRIPTOR_MLDB_UPRIGHT:
|
|
return CV_8U;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// returns the default norm type
|
|
int defaultNorm() const
|
|
{
|
|
switch (descriptor)
|
|
{
|
|
case DESCRIPTOR_KAZE:
|
|
case DESCRIPTOR_KAZE_UPRIGHT:
|
|
return NORM_L2;
|
|
|
|
case DESCRIPTOR_MLDB:
|
|
case DESCRIPTOR_MLDB_UPRIGHT:
|
|
return NORM_HAMMING;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
void detectAndCompute(InputArray image, InputArray mask,
|
|
std::vector<KeyPoint>& keypoints,
|
|
OutputArray descriptors,
|
|
bool useProvidedKeypoints)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
Mat img = image.getMat();
|
|
if (img.channels() > 1)
|
|
cvtColor(image, img, COLOR_BGR2GRAY);
|
|
|
|
Mat img1_32;
|
|
if ( img.depth() == CV_32F )
|
|
img1_32 = img;
|
|
else if ( img.depth() == CV_8U )
|
|
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
|
else if ( img.depth() == CV_16U )
|
|
img.convertTo(img1_32, CV_32F, 1.0 / 65535.0, 0);
|
|
|
|
CV_Assert( ! img1_32.empty() );
|
|
|
|
AKAZEOptions options;
|
|
options.descriptor = descriptor;
|
|
options.descriptor_channels = descriptor_channels;
|
|
options.descriptor_size = descriptor_size;
|
|
options.img_width = img.cols;
|
|
options.img_height = img.rows;
|
|
options.dthreshold = threshold;
|
|
options.omax = octaves;
|
|
options.nsublevels = sublevels;
|
|
options.diffusivity = diffusivity;
|
|
|
|
AKAZEFeatures impl(options);
|
|
impl.Create_Nonlinear_Scale_Space(img1_32);
|
|
|
|
if (!useProvidedKeypoints)
|
|
{
|
|
impl.Feature_Detection(keypoints);
|
|
impl.Compute_Keypoints_Orientation(keypoints);
|
|
}
|
|
|
|
if (!mask.empty())
|
|
{
|
|
KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
|
}
|
|
|
|
if( descriptors.needed() )
|
|
{
|
|
Mat desc;
|
|
impl.Compute_Descriptors(keypoints, desc);
|
|
// TODO optimize this copy
|
|
desc.copyTo(descriptors);
|
|
|
|
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
|
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
|
|
}
|
|
}
|
|
|
|
void write(FileStorage& fs) const
|
|
{
|
|
writeFormat(fs);
|
|
fs << "descriptor" << descriptor;
|
|
fs << "descriptor_channels" << descriptor_channels;
|
|
fs << "descriptor_size" << descriptor_size;
|
|
fs << "threshold" << threshold;
|
|
fs << "octaves" << octaves;
|
|
fs << "sublevels" << sublevels;
|
|
fs << "diffusivity" << diffusivity;
|
|
}
|
|
|
|
void read(const FileNode& fn)
|
|
{
|
|
descriptor = (int)fn["descriptor"];
|
|
descriptor_channels = (int)fn["descriptor_channels"];
|
|
descriptor_size = (int)fn["descriptor_size"];
|
|
threshold = (float)fn["threshold"];
|
|
octaves = (int)fn["octaves"];
|
|
sublevels = (int)fn["sublevels"];
|
|
diffusivity = (int)fn["diffusivity"];
|
|
}
|
|
|
|
int descriptor;
|
|
int descriptor_channels;
|
|
int descriptor_size;
|
|
float threshold;
|
|
int octaves;
|
|
int sublevels;
|
|
int diffusivity;
|
|
};
|
|
|
|
Ptr<AKAZE> AKAZE::create(int descriptor_type,
|
|
int descriptor_size, int descriptor_channels,
|
|
float threshold, int octaves,
|
|
int sublevels, int diffusivity)
|
|
{
|
|
return makePtr<AKAZE_Impl>(descriptor_type, descriptor_size, descriptor_channels,
|
|
threshold, octaves, sublevels, diffusivity);
|
|
}
|
|
}
|