Fix Single ThresholdBug in Simple Blob Detector * address bug with using min dist between blobs in blob detector cast type in comparison and remove docs address bug with using min dist between blobs in blob detector use scalar instead of int address bug with using min dist between blobs in blob detector * fix namespace and formatting
396 lines
13 KiB
C++
396 lines
13 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <iterator>
|
|
#include <limits>
|
|
|
|
// Requires CMake flag: DEBUG_opencv_features2d=ON
|
|
//#define DEBUG_BLOB_DETECTOR
|
|
|
|
#ifdef DEBUG_BLOB_DETECTOR
|
|
#include "opencv2/highgui.hpp"
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
|
|
class CV_EXPORTS_W SimpleBlobDetectorImpl : public SimpleBlobDetector
|
|
{
|
|
public:
|
|
|
|
explicit SimpleBlobDetectorImpl(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
|
|
|
|
virtual void read( const FileNode& fn ) CV_OVERRIDE;
|
|
virtual void write( FileStorage& fs ) const CV_OVERRIDE;
|
|
|
|
protected:
|
|
struct CV_EXPORTS Center
|
|
{
|
|
Point2d location;
|
|
double radius;
|
|
double confidence;
|
|
};
|
|
|
|
virtual void detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) CV_OVERRIDE;
|
|
virtual void findBlobs(InputArray image, InputArray binaryImage, std::vector<Center> ¢ers) const;
|
|
|
|
Params params;
|
|
};
|
|
|
|
/*
|
|
* SimpleBlobDetector
|
|
*/
|
|
SimpleBlobDetector::Params::Params()
|
|
{
|
|
thresholdStep = 10;
|
|
minThreshold = 50;
|
|
maxThreshold = 220;
|
|
minRepeatability = 2;
|
|
minDistBetweenBlobs = 10;
|
|
|
|
filterByColor = true;
|
|
blobColor = 0;
|
|
|
|
filterByArea = true;
|
|
minArea = 25;
|
|
maxArea = 5000;
|
|
|
|
filterByCircularity = false;
|
|
minCircularity = 0.8f;
|
|
maxCircularity = std::numeric_limits<float>::max();
|
|
|
|
filterByInertia = true;
|
|
//minInertiaRatio = 0.6;
|
|
minInertiaRatio = 0.1f;
|
|
maxInertiaRatio = std::numeric_limits<float>::max();
|
|
|
|
filterByConvexity = true;
|
|
//minConvexity = 0.8;
|
|
minConvexity = 0.95f;
|
|
maxConvexity = std::numeric_limits<float>::max();
|
|
}
|
|
|
|
void SimpleBlobDetector::Params::read(const cv::FileNode& fn )
|
|
{
|
|
thresholdStep = fn["thresholdStep"];
|
|
minThreshold = fn["minThreshold"];
|
|
maxThreshold = fn["maxThreshold"];
|
|
|
|
minRepeatability = (size_t)(int)fn["minRepeatability"];
|
|
minDistBetweenBlobs = fn["minDistBetweenBlobs"];
|
|
|
|
filterByColor = (int)fn["filterByColor"] != 0 ? true : false;
|
|
blobColor = (uchar)(int)fn["blobColor"];
|
|
|
|
filterByArea = (int)fn["filterByArea"] != 0 ? true : false;
|
|
minArea = fn["minArea"];
|
|
maxArea = fn["maxArea"];
|
|
|
|
filterByCircularity = (int)fn["filterByCircularity"] != 0 ? true : false;
|
|
minCircularity = fn["minCircularity"];
|
|
maxCircularity = fn["maxCircularity"];
|
|
|
|
filterByInertia = (int)fn["filterByInertia"] != 0 ? true : false;
|
|
minInertiaRatio = fn["minInertiaRatio"];
|
|
maxInertiaRatio = fn["maxInertiaRatio"];
|
|
|
|
filterByConvexity = (int)fn["filterByConvexity"] != 0 ? true : false;
|
|
minConvexity = fn["minConvexity"];
|
|
maxConvexity = fn["maxConvexity"];
|
|
}
|
|
|
|
void SimpleBlobDetector::Params::write(cv::FileStorage& fs) const
|
|
{
|
|
fs << "thresholdStep" << thresholdStep;
|
|
fs << "minThreshold" << minThreshold;
|
|
fs << "maxThreshold" << maxThreshold;
|
|
|
|
fs << "minRepeatability" << (int)minRepeatability;
|
|
fs << "minDistBetweenBlobs" << minDistBetweenBlobs;
|
|
|
|
fs << "filterByColor" << (int)filterByColor;
|
|
fs << "blobColor" << (int)blobColor;
|
|
|
|
fs << "filterByArea" << (int)filterByArea;
|
|
fs << "minArea" << minArea;
|
|
fs << "maxArea" << maxArea;
|
|
|
|
fs << "filterByCircularity" << (int)filterByCircularity;
|
|
fs << "minCircularity" << minCircularity;
|
|
fs << "maxCircularity" << maxCircularity;
|
|
|
|
fs << "filterByInertia" << (int)filterByInertia;
|
|
fs << "minInertiaRatio" << minInertiaRatio;
|
|
fs << "maxInertiaRatio" << maxInertiaRatio;
|
|
|
|
fs << "filterByConvexity" << (int)filterByConvexity;
|
|
fs << "minConvexity" << minConvexity;
|
|
fs << "maxConvexity" << maxConvexity;
|
|
}
|
|
|
|
SimpleBlobDetectorImpl::SimpleBlobDetectorImpl(const SimpleBlobDetector::Params ¶meters) :
|
|
params(parameters)
|
|
{
|
|
}
|
|
|
|
void SimpleBlobDetectorImpl::read( const cv::FileNode& fn )
|
|
{
|
|
params.read(fn);
|
|
}
|
|
|
|
void SimpleBlobDetectorImpl::write( cv::FileStorage& fs ) const
|
|
{
|
|
writeFormat(fs);
|
|
params.write(fs);
|
|
}
|
|
|
|
void SimpleBlobDetectorImpl::findBlobs(InputArray _image, InputArray _binaryImage, std::vector<Center> ¢ers) const
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
|
|
CV_UNUSED(image);
|
|
centers.clear();
|
|
|
|
std::vector < std::vector<Point> > contours;
|
|
findContours(binaryImage, contours, RETR_LIST, CHAIN_APPROX_NONE);
|
|
|
|
#ifdef DEBUG_BLOB_DETECTOR
|
|
Mat keypointsImage;
|
|
cvtColor(binaryImage, keypointsImage, COLOR_GRAY2RGB);
|
|
|
|
Mat contoursImage;
|
|
cvtColor(binaryImage, contoursImage, COLOR_GRAY2RGB);
|
|
drawContours( contoursImage, contours, -1, Scalar(0,255,0) );
|
|
imshow("contours", contoursImage );
|
|
#endif
|
|
|
|
for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++)
|
|
{
|
|
Center center;
|
|
center.confidence = 1;
|
|
Moments moms = moments(contours[contourIdx]);
|
|
if (params.filterByArea)
|
|
{
|
|
double area = moms.m00;
|
|
if (area < params.minArea || area >= params.maxArea)
|
|
continue;
|
|
}
|
|
|
|
if (params.filterByCircularity)
|
|
{
|
|
double area = moms.m00;
|
|
double perimeter = arcLength(contours[contourIdx], true);
|
|
double ratio = 4 * CV_PI * area / (perimeter * perimeter);
|
|
if (ratio < params.minCircularity || ratio >= params.maxCircularity)
|
|
continue;
|
|
}
|
|
|
|
if (params.filterByInertia)
|
|
{
|
|
double denominator = std::sqrt(std::pow(2 * moms.mu11, 2) + std::pow(moms.mu20 - moms.mu02, 2));
|
|
const double eps = 1e-2;
|
|
double ratio;
|
|
if (denominator > eps)
|
|
{
|
|
double cosmin = (moms.mu20 - moms.mu02) / denominator;
|
|
double sinmin = 2 * moms.mu11 / denominator;
|
|
double cosmax = -cosmin;
|
|
double sinmax = -sinmin;
|
|
|
|
double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin;
|
|
double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax;
|
|
ratio = imin / imax;
|
|
}
|
|
else
|
|
{
|
|
ratio = 1;
|
|
}
|
|
|
|
if (ratio < params.minInertiaRatio || ratio >= params.maxInertiaRatio)
|
|
continue;
|
|
|
|
center.confidence = ratio * ratio;
|
|
}
|
|
|
|
if (params.filterByConvexity)
|
|
{
|
|
std::vector < Point > hull;
|
|
convexHull(contours[contourIdx], hull);
|
|
double area = moms.m00;
|
|
double hullArea = contourArea(hull);
|
|
if (fabs(hullArea) < DBL_EPSILON)
|
|
continue;
|
|
double ratio = area / hullArea;
|
|
if (ratio < params.minConvexity || ratio >= params.maxConvexity)
|
|
continue;
|
|
}
|
|
|
|
if(moms.m00 == 0.0)
|
|
continue;
|
|
center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00);
|
|
|
|
if (params.filterByColor)
|
|
{
|
|
if (binaryImage.at<uchar> (cvRound(center.location.y), cvRound(center.location.x)) != params.blobColor)
|
|
continue;
|
|
}
|
|
|
|
//compute blob radius
|
|
{
|
|
std::vector<double> dists;
|
|
for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++)
|
|
{
|
|
Point2d pt = contours[contourIdx][pointIdx];
|
|
dists.push_back(norm(center.location - pt));
|
|
}
|
|
std::sort(dists.begin(), dists.end());
|
|
center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
|
|
}
|
|
|
|
centers.push_back(center);
|
|
|
|
|
|
#ifdef DEBUG_BLOB_DETECTOR
|
|
circle( keypointsImage, center.location, 1, Scalar(0,0,255), 1 );
|
|
#endif
|
|
}
|
|
#ifdef DEBUG_BLOB_DETECTOR
|
|
imshow("bk", keypointsImage );
|
|
waitKey();
|
|
#endif
|
|
}
|
|
|
|
void SimpleBlobDetectorImpl::detect(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray mask)
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
keypoints.clear();
|
|
CV_Assert(params.minRepeatability != 0);
|
|
Mat grayscaleImage;
|
|
if (image.channels() == 3 || image.channels() == 4)
|
|
cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
|
|
else
|
|
grayscaleImage = image.getMat();
|
|
|
|
if (grayscaleImage.type() != CV_8UC1) {
|
|
CV_Error(Error::StsUnsupportedFormat, "Blob detector only supports 8-bit images!");
|
|
}
|
|
|
|
std::vector < std::vector<Center> > centers;
|
|
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
|
|
{
|
|
Mat binarizedImage;
|
|
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
|
|
|
|
std::vector < Center > curCenters;
|
|
findBlobs(grayscaleImage, binarizedImage, curCenters);
|
|
if(params.maxThreshold - params.minThreshold <= params.thresholdStep) {
|
|
// if the difference between min and max threshold is less than the threshold step
|
|
// we're only going to enter the loop once, so we need to add curCenters
|
|
// to ensure we still use minDistBetweenBlobs
|
|
centers.push_back(curCenters);
|
|
}
|
|
std::vector < std::vector<Center> > newCenters;
|
|
for (size_t i = 0; i < curCenters.size(); i++)
|
|
{
|
|
bool isNew = true;
|
|
for (size_t j = 0; j < centers.size(); j++)
|
|
{
|
|
double dist = norm(centers[j][centers[j].size() / 2 ].location - curCenters[i].location);
|
|
isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius;
|
|
if (!isNew)
|
|
{
|
|
centers[j].push_back(curCenters[i]);
|
|
|
|
size_t k = centers[j].size() - 1;
|
|
while( k > 0 && curCenters[i].radius < centers[j][k-1].radius )
|
|
{
|
|
centers[j][k] = centers[j][k-1];
|
|
k--;
|
|
}
|
|
centers[j][k] = curCenters[i];
|
|
|
|
break;
|
|
}
|
|
}
|
|
if (isNew)
|
|
newCenters.push_back(std::vector<Center> (1, curCenters[i]));
|
|
}
|
|
std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
|
|
}
|
|
|
|
for (size_t i = 0; i < centers.size(); i++)
|
|
{
|
|
if (centers[i].size() < params.minRepeatability)
|
|
continue;
|
|
Point2d sumPoint(0, 0);
|
|
double normalizer = 0;
|
|
for (size_t j = 0; j < centers[i].size(); j++)
|
|
{
|
|
sumPoint += centers[i][j].confidence * centers[i][j].location;
|
|
normalizer += centers[i][j].confidence;
|
|
}
|
|
sumPoint *= (1. / normalizer);
|
|
KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius) * 2.0f);
|
|
keypoints.push_back(kpt);
|
|
}
|
|
|
|
if (!mask.empty())
|
|
{
|
|
KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
|
}
|
|
}
|
|
|
|
Ptr<SimpleBlobDetector> SimpleBlobDetector::create(const SimpleBlobDetector::Params& params)
|
|
{
|
|
return makePtr<SimpleBlobDetectorImpl>(params);
|
|
}
|
|
|
|
String SimpleBlobDetector::getDefaultName() const
|
|
{
|
|
return (Feature2D::getDefaultName() + ".SimpleBlobDetector");
|
|
}
|
|
|
|
}
|