1213 lines
45 KiB
C++
1213 lines
45 KiB
C++
|
|
//=============================================================================
|
|
//
|
|
// KAZE.cpp
|
|
// Author: Pablo F. Alcantarilla
|
|
// Institution: University d'Auvergne
|
|
// Address: Clermont Ferrand, France
|
|
// Date: 21/01/2012
|
|
// Email: pablofdezalc@gmail.com
|
|
//
|
|
// KAZE Features Copyright 2012, Pablo F. Alcantarilla
|
|
// All Rights Reserved
|
|
// See LICENSE for the license information
|
|
//=============================================================================
|
|
|
|
/**
|
|
* @file KAZEFeatures.cpp
|
|
* @brief Main class for detecting and describing features in a nonlinear
|
|
* scale space
|
|
* @date Jan 21, 2012
|
|
* @author Pablo F. Alcantarilla
|
|
*/
|
|
#include "../precomp.hpp"
|
|
#include "KAZEFeatures.h"
|
|
#include "utils.h"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
// Namespaces
|
|
using namespace std;
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief KAZE constructor with input options
|
|
* @param options KAZE configuration options
|
|
* @note The constructor allocates memory for the nonlinear scale space
|
|
*/
|
|
KAZEFeatures::KAZEFeatures(KAZEOptions& options)
|
|
: options_(options)
|
|
{
|
|
ncycles_ = 0;
|
|
reordering_ = true;
|
|
|
|
// Now allocate memory for the evolution
|
|
Allocate_Memory_Evolution();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method allocates the memory for the nonlinear diffusion evolution
|
|
*/
|
|
void KAZEFeatures::Allocate_Memory_Evolution(void) {
|
|
|
|
// Allocate the dimension of the matrices for the evolution
|
|
for (int i = 0; i <= options_.omax - 1; i++)
|
|
{
|
|
for (int j = 0; j <= options_.nsublevels - 1; j++)
|
|
{
|
|
TEvolution aux;
|
|
aux.Lx = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
|
|
aux.Ly = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
|
|
aux.Lxx = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
|
|
aux.Lxy = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
|
|
aux.Lyy = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
|
|
aux.Lt = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
|
|
aux.Lsmooth = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
|
|
aux.Ldet = Mat::zeros(options_.img_height, options_.img_width, CV_32F);
|
|
aux.esigma = options_.soffset*pow((float)2.0f, (float)(j) / (float)(options_.nsublevels)+i);
|
|
aux.etime = 0.5f*(aux.esigma*aux.esigma);
|
|
aux.sigma_size = cvRound(aux.esigma);
|
|
aux.octave = i;
|
|
aux.sublevel = j;
|
|
evolution_.push_back(aux);
|
|
}
|
|
}
|
|
|
|
// Allocate memory for the FED number of cycles and time steps
|
|
for (size_t i = 1; i < evolution_.size(); i++)
|
|
{
|
|
int naux = 0;
|
|
vector<float> tau;
|
|
float ttime = 0.0;
|
|
ttime = evolution_[i].etime - evolution_[i - 1].etime;
|
|
naux = fed_tau_by_process_time(ttime, 1, 0.25f, reordering_, tau);
|
|
nsteps_.push_back(naux);
|
|
tsteps_.push_back(tau);
|
|
ncycles_++;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method creates the nonlinear scale space for a given image
|
|
* @param img Input image for which the nonlinear scale space needs to be created
|
|
* @return 0 if the nonlinear scale space was created successfully. -1 otherwise
|
|
*/
|
|
int KAZEFeatures::Create_Nonlinear_Scale_Space(const Mat &img)
|
|
{
|
|
CV_Assert(evolution_.size() > 0);
|
|
|
|
// Copy the original image to the first level of the evolution
|
|
img.copyTo(evolution_[0].Lt);
|
|
gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lt, 0, 0, options_.soffset);
|
|
gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lsmooth, 0, 0, options_.sderivatives);
|
|
|
|
// Firstly compute the kcontrast factor
|
|
Compute_KContrast(evolution_[0].Lt, options_.kcontrast_percentille);
|
|
|
|
// Allocate memory for the flow and step images
|
|
Mat Lflow = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F);
|
|
Mat Lstep = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F);
|
|
|
|
// Now generate the rest of evolution levels
|
|
for (size_t i = 1; i < evolution_.size(); i++)
|
|
{
|
|
evolution_[i - 1].Lt.copyTo(evolution_[i].Lt);
|
|
gaussian_2D_convolution(evolution_[i - 1].Lt, evolution_[i].Lsmooth, 0, 0, options_.sderivatives);
|
|
|
|
// Compute the Gaussian derivatives Lx and Ly
|
|
Scharr(evolution_[i].Lsmooth, evolution_[i].Lx, CV_32F, 1, 0, 1, 0, BORDER_DEFAULT);
|
|
Scharr(evolution_[i].Lsmooth, evolution_[i].Ly, CV_32F, 0, 1, 1, 0, BORDER_DEFAULT);
|
|
|
|
// Compute the conductivity equation
|
|
if (options_.diffusivity == KAZE::DIFF_PM_G1)
|
|
pm_g1(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
|
|
else if (options_.diffusivity == KAZE::DIFF_PM_G2)
|
|
pm_g2(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
|
|
else if (options_.diffusivity == KAZE::DIFF_WEICKERT)
|
|
weickert_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
|
|
|
|
// Perform FED n inner steps
|
|
for (int j = 0; j < nsteps_[i - 1]; j++)
|
|
nld_step_scalar(evolution_[i].Lt, Lflow, Lstep, tsteps_[i - 1][j]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the k contrast factor
|
|
* @param img Input image
|
|
* @param kpercentile Percentile of the gradient histogram
|
|
*/
|
|
void KAZEFeatures::Compute_KContrast(const Mat &img, const float &kpercentile)
|
|
{
|
|
options_.kcontrast = compute_k_percentile(img, kpercentile, options_.sderivatives, options_.kcontrast_bins, 0, 0);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the feature detector response for the nonlinear scale space
|
|
* @note We use the Hessian determinant as feature detector
|
|
*/
|
|
void KAZEFeatures::Compute_Detector_Response(void)
|
|
{
|
|
float lxx = 0.0, lxy = 0.0, lyy = 0.0;
|
|
|
|
// Firstly compute the multiscale derivatives
|
|
Compute_Multiscale_Derivatives();
|
|
|
|
for (size_t i = 0; i < evolution_.size(); i++)
|
|
{
|
|
for (int ix = 0; ix < options_.img_height; ix++)
|
|
{
|
|
for (int jx = 0; jx < options_.img_width; jx++)
|
|
{
|
|
lxx = *(evolution_[i].Lxx.ptr<float>(ix)+jx);
|
|
lxy = *(evolution_[i].Lxy.ptr<float>(ix)+jx);
|
|
lyy = *(evolution_[i].Lyy.ptr<float>(ix)+jx);
|
|
*(evolution_[i].Ldet.ptr<float>(ix)+jx) = (lxx*lyy - lxy*lxy);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method selects interesting keypoints through the nonlinear scale space
|
|
* @param kpts Vector of keypoints
|
|
*/
|
|
void KAZEFeatures::Feature_Detection(std::vector<KeyPoint>& kpts)
|
|
{
|
|
kpts.clear();
|
|
Compute_Detector_Response();
|
|
Determinant_Hessian(kpts);
|
|
Do_Subpixel_Refinement(kpts);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
class MultiscaleDerivativesKAZEInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
explicit MultiscaleDerivativesKAZEInvoker(std::vector<TEvolution>& ev) : evolution_(&ev)
|
|
{
|
|
}
|
|
|
|
void operator()(const Range& range) const
|
|
{
|
|
std::vector<TEvolution>& evolution = *evolution_;
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Lx, 1, 0, evolution[i].sigma_size);
|
|
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Ly, 0, 1, evolution[i].sigma_size);
|
|
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxx, 1, 0, evolution[i].sigma_size);
|
|
compute_scharr_derivatives(evolution[i].Ly, evolution[i].Lyy, 0, 1, evolution[i].sigma_size);
|
|
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxy, 0, 1, evolution[i].sigma_size);
|
|
|
|
evolution[i].Lx = evolution[i].Lx*((evolution[i].sigma_size));
|
|
evolution[i].Ly = evolution[i].Ly*((evolution[i].sigma_size));
|
|
evolution[i].Lxx = evolution[i].Lxx*((evolution[i].sigma_size)*(evolution[i].sigma_size));
|
|
evolution[i].Lxy = evolution[i].Lxy*((evolution[i].sigma_size)*(evolution[i].sigma_size));
|
|
evolution[i].Lyy = evolution[i].Lyy*((evolution[i].sigma_size)*(evolution[i].sigma_size));
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<TEvolution>* evolution_;
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the multiscale derivatives for the nonlinear scale space
|
|
*/
|
|
void KAZEFeatures::Compute_Multiscale_Derivatives(void)
|
|
{
|
|
parallel_for_(Range(0, (int)evolution_.size()),
|
|
MultiscaleDerivativesKAZEInvoker(evolution_));
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
class FindExtremumKAZEInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
explicit FindExtremumKAZEInvoker(std::vector<TEvolution>& ev, std::vector<std::vector<KeyPoint> >& kpts_par,
|
|
const KAZEOptions& options) : evolution_(&ev), kpts_par_(&kpts_par), options_(options)
|
|
{
|
|
}
|
|
|
|
void operator()(const Range& range) const
|
|
{
|
|
std::vector<TEvolution>& evolution = *evolution_;
|
|
std::vector<std::vector<KeyPoint> >& kpts_par = *kpts_par_;
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
float value = 0.0;
|
|
bool is_extremum = false;
|
|
|
|
for (int ix = 1; ix < options_.img_height - 1; ix++)
|
|
{
|
|
for (int jx = 1; jx < options_.img_width - 1; jx++)
|
|
{
|
|
is_extremum = false;
|
|
value = *(evolution[i].Ldet.ptr<float>(ix)+jx);
|
|
|
|
// Filter the points with the detector threshold
|
|
if (value > options_.dthreshold)
|
|
{
|
|
if (value >= *(evolution[i].Ldet.ptr<float>(ix)+jx - 1))
|
|
{
|
|
// First check on the same scale
|
|
if (check_maximum_neighbourhood(evolution[i].Ldet, 1, value, ix, jx, 1))
|
|
{
|
|
// Now check on the lower scale
|
|
if (check_maximum_neighbourhood(evolution[i - 1].Ldet, 1, value, ix, jx, 0))
|
|
{
|
|
// Now check on the upper scale
|
|
if (check_maximum_neighbourhood(evolution[i + 1].Ldet, 1, value, ix, jx, 0))
|
|
is_extremum = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the point of interest!!
|
|
if (is_extremum)
|
|
{
|
|
KeyPoint point;
|
|
point.pt.x = (float)jx;
|
|
point.pt.y = (float)ix;
|
|
point.response = fabs(value);
|
|
point.size = evolution[i].esigma;
|
|
point.octave = (int)evolution[i].octave;
|
|
point.class_id = i;
|
|
|
|
// We use the angle field for the sublevel value
|
|
// Then, we will replace this angle field with the main orientation
|
|
point.angle = static_cast<float>(evolution[i].sublevel);
|
|
kpts_par[i - 1].push_back(point);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<TEvolution>* evolution_;
|
|
std::vector<std::vector<KeyPoint> >* kpts_par_;
|
|
KAZEOptions options_;
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method performs the detection of keypoints by using the normalized
|
|
* score of the Hessian determinant through the nonlinear scale space
|
|
* @param kpts Vector of keypoints
|
|
* @note We compute features for each of the nonlinear scale space level in a different processing thread
|
|
*/
|
|
void KAZEFeatures::Determinant_Hessian(std::vector<KeyPoint>& kpts)
|
|
{
|
|
int level = 0;
|
|
float dist = 0.0, smax = 3.0;
|
|
int npoints = 0, id_repeated = 0;
|
|
int left_x = 0, right_x = 0, up_y = 0, down_y = 0;
|
|
bool is_extremum = false, is_repeated = false, is_out = false;
|
|
|
|
// Delete the memory of the vector of keypoints vectors
|
|
// In case we use the same kaze object for multiple images
|
|
for (size_t i = 0; i < kpts_par_.size(); i++) {
|
|
vector<KeyPoint>().swap(kpts_par_[i]);
|
|
}
|
|
kpts_par_.clear();
|
|
vector<KeyPoint> aux;
|
|
|
|
// Allocate memory for the vector of vectors
|
|
for (size_t i = 1; i < evolution_.size() - 1; i++) {
|
|
kpts_par_.push_back(aux);
|
|
}
|
|
|
|
parallel_for_(Range(1, (int)evolution_.size()-1),
|
|
FindExtremumKAZEInvoker(evolution_, kpts_par_, options_));
|
|
|
|
// Now fill the vector of keypoints!!!
|
|
for (int i = 0; i < (int)kpts_par_.size(); i++)
|
|
{
|
|
for (int j = 0; j < (int)kpts_par_[i].size(); j++)
|
|
{
|
|
level = i + 1;
|
|
is_extremum = true;
|
|
is_repeated = false;
|
|
is_out = false;
|
|
|
|
// Check in case we have the same point as maxima in previous evolution levels
|
|
for (int ik = 0; ik < (int)kpts.size(); ik++) {
|
|
if (kpts[ik].class_id == level || kpts[ik].class_id == level + 1 || kpts[ik].class_id == level - 1) {
|
|
dist = pow(kpts_par_[i][j].pt.x - kpts[ik].pt.x, 2) + pow(kpts_par_[i][j].pt.y - kpts[ik].pt.y, 2);
|
|
|
|
if (dist < evolution_[level].sigma_size*evolution_[level].sigma_size) {
|
|
if (kpts_par_[i][j].response > kpts[ik].response) {
|
|
id_repeated = ik;
|
|
is_repeated = true;
|
|
}
|
|
else {
|
|
is_extremum = false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_extremum == true) {
|
|
// Check that the point is under the image limits for the descriptor computation
|
|
left_x = cvRound(kpts_par_[i][j].pt.x - smax*kpts_par_[i][j].size);
|
|
right_x = cvRound(kpts_par_[i][j].pt.x + smax*kpts_par_[i][j].size);
|
|
up_y = cvRound(kpts_par_[i][j].pt.y - smax*kpts_par_[i][j].size);
|
|
down_y = cvRound(kpts_par_[i][j].pt.y + smax*kpts_par_[i][j].size);
|
|
|
|
if (left_x < 0 || right_x >= evolution_[level].Ldet.cols ||
|
|
up_y < 0 || down_y >= evolution_[level].Ldet.rows) {
|
|
is_out = true;
|
|
}
|
|
|
|
is_out = false;
|
|
|
|
if (is_out == false) {
|
|
if (is_repeated == false) {
|
|
kpts.push_back(kpts_par_[i][j]);
|
|
npoints++;
|
|
}
|
|
else {
|
|
kpts[id_repeated] = kpts_par_[i][j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method performs subpixel refinement of the detected keypoints
|
|
* @param kpts Vector of detected keypoints
|
|
*/
|
|
void KAZEFeatures::Do_Subpixel_Refinement(std::vector<KeyPoint> &kpts) {
|
|
|
|
int step = 1;
|
|
int x = 0, y = 0;
|
|
float Dx = 0.0, Dy = 0.0, Ds = 0.0, dsc = 0.0;
|
|
float Dxx = 0.0, Dyy = 0.0, Dss = 0.0, Dxy = 0.0, Dxs = 0.0, Dys = 0.0;
|
|
Mat A = Mat::zeros(3, 3, CV_32F);
|
|
Mat b = Mat::zeros(3, 1, CV_32F);
|
|
Mat dst = Mat::zeros(3, 1, CV_32F);
|
|
|
|
vector<KeyPoint> kpts_(kpts);
|
|
|
|
for (size_t i = 0; i < kpts_.size(); i++) {
|
|
|
|
x = static_cast<int>(kpts_[i].pt.x);
|
|
y = static_cast<int>(kpts_[i].pt.y);
|
|
|
|
// Compute the gradient
|
|
Dx = (1.0f / (2.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x + step)
|
|
- *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x - step));
|
|
Dy = (1.0f / (2.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x)
|
|
- *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x));
|
|
Ds = 0.5f*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x)
|
|
- *(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x));
|
|
|
|
// Compute the Hessian
|
|
Dxx = (1.0f / (step*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x + step)
|
|
+ *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x - step)
|
|
- 2.0f*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x)));
|
|
|
|
Dyy = (1.0f / (step*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x)
|
|
+ *(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x)
|
|
- 2.0f*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x)));
|
|
|
|
Dss = *(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x)
|
|
+ *(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x)
|
|
- 2.0f*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y)+x));
|
|
|
|
Dxy = (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x + step)
|
|
+ (*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x - step)))
|
|
- (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y - step) + x + step)
|
|
+ (*(evolution_[kpts_[i].class_id].Ldet.ptr<float>(y + step) + x - step)));
|
|
|
|
Dxs = (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x + step)
|
|
+ (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x - step)))
|
|
- (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y)+x - step)
|
|
+ (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y)+x + step)));
|
|
|
|
Dys = (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y + step) + x)
|
|
+ (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y - step) + x)))
|
|
- (1.0f / (4.0f*step))*(*(evolution_[kpts_[i].class_id + 1].Ldet.ptr<float>(y - step) + x)
|
|
+ (*(evolution_[kpts_[i].class_id - 1].Ldet.ptr<float>(y + step) + x)));
|
|
|
|
// Solve the linear system
|
|
*(A.ptr<float>(0)) = Dxx;
|
|
*(A.ptr<float>(1) + 1) = Dyy;
|
|
*(A.ptr<float>(2) + 2) = Dss;
|
|
|
|
*(A.ptr<float>(0) + 1) = *(A.ptr<float>(1)) = Dxy;
|
|
*(A.ptr<float>(0) + 2) = *(A.ptr<float>(2)) = Dxs;
|
|
*(A.ptr<float>(1) + 2) = *(A.ptr<float>(2) + 1) = Dys;
|
|
|
|
*(b.ptr<float>(0)) = -Dx;
|
|
*(b.ptr<float>(1)) = -Dy;
|
|
*(b.ptr<float>(2)) = -Ds;
|
|
|
|
solve(A, b, dst, DECOMP_LU);
|
|
|
|
if (fabs(*(dst.ptr<float>(0))) <= 1.0f && fabs(*(dst.ptr<float>(1))) <= 1.0f && fabs(*(dst.ptr<float>(2))) <= 1.0f) {
|
|
kpts_[i].pt.x += *(dst.ptr<float>(0));
|
|
kpts_[i].pt.y += *(dst.ptr<float>(1));
|
|
dsc = kpts_[i].octave + (kpts_[i].angle + *(dst.ptr<float>(2))) / ((float)(options_.nsublevels));
|
|
|
|
// In OpenCV the size of a keypoint is the diameter!!
|
|
kpts_[i].size = 2.0f*options_.soffset*pow((float)2.0f, dsc);
|
|
kpts_[i].angle = 0.0;
|
|
}
|
|
// Set the points to be deleted after the for loop
|
|
else {
|
|
kpts_[i].response = -1;
|
|
}
|
|
}
|
|
|
|
// Clear the vector of keypoints
|
|
kpts.clear();
|
|
|
|
for (size_t i = 0; i < kpts_.size(); i++) {
|
|
if (kpts_[i].response != -1) {
|
|
kpts.push_back(kpts_[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
class KAZE_Descriptor_Invoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
KAZE_Descriptor_Invoker(std::vector<KeyPoint> &kpts, Mat &desc, std::vector<TEvolution>& evolution, const KAZEOptions& options)
|
|
: kpts_(&kpts)
|
|
, desc_(&desc)
|
|
, evolution_(&evolution)
|
|
, options_(options)
|
|
{
|
|
}
|
|
|
|
virtual ~KAZE_Descriptor_Invoker()
|
|
{
|
|
}
|
|
|
|
void operator() (const Range& range) const
|
|
{
|
|
std::vector<KeyPoint> &kpts = *kpts_;
|
|
Mat &desc = *desc_;
|
|
std::vector<TEvolution> &evolution = *evolution_;
|
|
|
|
for (int i = range.start; i < range.end; i++)
|
|
{
|
|
kpts[i].angle = 0.0;
|
|
if (options_.upright)
|
|
{
|
|
kpts[i].angle = 0.0;
|
|
if (options_.extended)
|
|
Get_KAZE_Upright_Descriptor_128(kpts[i], desc.ptr<float>((int)i));
|
|
else
|
|
Get_KAZE_Upright_Descriptor_64(kpts[i], desc.ptr<float>((int)i));
|
|
}
|
|
else
|
|
{
|
|
KAZEFeatures::Compute_Main_Orientation(kpts[i], evolution, options_);
|
|
|
|
if (options_.extended)
|
|
Get_KAZE_Descriptor_128(kpts[i], desc.ptr<float>((int)i));
|
|
else
|
|
Get_KAZE_Descriptor_64(kpts[i], desc.ptr<float>((int)i));
|
|
}
|
|
}
|
|
}
|
|
private:
|
|
void Get_KAZE_Upright_Descriptor_64(const KeyPoint& kpt, float* desc) const;
|
|
void Get_KAZE_Descriptor_64(const KeyPoint& kpt, float* desc) const;
|
|
void Get_KAZE_Upright_Descriptor_128(const KeyPoint& kpt, float* desc) const;
|
|
void Get_KAZE_Descriptor_128(const KeyPoint& kpt, float *desc) const;
|
|
|
|
std::vector<KeyPoint> * kpts_;
|
|
Mat * desc_;
|
|
std::vector<TEvolution> * evolution_;
|
|
KAZEOptions options_;
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the set of descriptors through the nonlinear scale space
|
|
* @param kpts Vector of keypoints
|
|
* @param desc Matrix with the feature descriptors
|
|
*/
|
|
void KAZEFeatures::Feature_Description(std::vector<KeyPoint> &kpts, Mat &desc)
|
|
{
|
|
for(size_t i = 0; i < kpts.size(); i++)
|
|
{
|
|
CV_Assert(0 <= kpts[i].class_id && kpts[i].class_id < static_cast<int>(evolution_.size()));
|
|
}
|
|
|
|
// Allocate memory for the matrix of descriptors
|
|
if (options_.extended == true) {
|
|
desc = Mat::zeros((int)kpts.size(), 128, CV_32FC1);
|
|
}
|
|
else {
|
|
desc = Mat::zeros((int)kpts.size(), 64, CV_32FC1);
|
|
}
|
|
|
|
parallel_for_(Range(0, (int)kpts.size()), KAZE_Descriptor_Invoker(kpts, desc, evolution_, options_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the main orientation for a given keypoint
|
|
* @param kpt Input keypoint
|
|
* @note The orientation is computed using a similar approach as described in the
|
|
* original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006
|
|
*/
|
|
void KAZEFeatures::Compute_Main_Orientation(KeyPoint &kpt, const std::vector<TEvolution>& evolution_, const KAZEOptions& options)
|
|
{
|
|
int ix = 0, iy = 0, idx = 0, s = 0, level = 0;
|
|
float xf = 0.0, yf = 0.0, gweight = 0.0;
|
|
vector<float> resX(109), resY(109), Ang(109);
|
|
|
|
// Variables for computing the dominant direction
|
|
float sumX = 0.0, sumY = 0.0, max = 0.0, ang1 = 0.0, ang2 = 0.0;
|
|
|
|
// Get the information from the keypoint
|
|
xf = kpt.pt.x;
|
|
yf = kpt.pt.y;
|
|
level = kpt.class_id;
|
|
s = cvRound(kpt.size / 2.0f);
|
|
|
|
// Calculate derivatives responses for points within radius of 6*scale
|
|
for (int i = -6; i <= 6; ++i) {
|
|
for (int j = -6; j <= 6; ++j) {
|
|
if (i*i + j*j < 36) {
|
|
iy = cvRound(yf + j*s);
|
|
ix = cvRound(xf + i*s);
|
|
|
|
if (iy >= 0 && iy < options.img_height && ix >= 0 && ix < options.img_width) {
|
|
gweight = gaussian(iy - yf, ix - xf, 2.5f*s);
|
|
resX[idx] = gweight*(*(evolution_[level].Lx.ptr<float>(iy)+ix));
|
|
resY[idx] = gweight*(*(evolution_[level].Ly.ptr<float>(iy)+ix));
|
|
}
|
|
else {
|
|
resX[idx] = 0.0;
|
|
resY[idx] = 0.0;
|
|
}
|
|
|
|
Ang[idx] = fastAtan2(resX[idx], resY[idx]) * (float)(CV_PI / 180.0f);
|
|
++idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loop slides pi/3 window around feature point
|
|
for (ang1 = 0; ang1 < 2.0f*CV_PI; ang1 += 0.15f) {
|
|
ang2 = (ang1 + (float)(CV_PI / 3.0) > (float)(2.0*CV_PI) ? ang1 - (float)(5.0*CV_PI / 3.0) : ang1 + (float)(CV_PI / 3.0));
|
|
sumX = sumY = 0.f;
|
|
|
|
for (size_t k = 0; k < Ang.size(); ++k) {
|
|
// Get angle from the x-axis of the sample point
|
|
const float & ang = Ang[k];
|
|
|
|
// Determine whether the point is within the window
|
|
if (ang1 < ang2 && ang1 < ang && ang < ang2) {
|
|
sumX += resX[k];
|
|
sumY += resY[k];
|
|
}
|
|
else if (ang2 < ang1 &&
|
|
((ang > 0 && ang < ang2) || (ang > ang1 && ang < (float)(2.0*CV_PI)))) {
|
|
sumX += resX[k];
|
|
sumY += resY[k];
|
|
}
|
|
}
|
|
|
|
// if the vector produced from this window is longer than all
|
|
// previous vectors then this forms the new dominant direction
|
|
if (sumX*sumX + sumY*sumY > max) {
|
|
// store largest orientation
|
|
max = sumX*sumX + sumY*sumY;
|
|
kpt.angle = fastAtan2(sumX, sumY);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the upright descriptor (not rotation invariant) of
|
|
* the provided keypoint
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
|
|
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
|
* ECCV 2008
|
|
*/
|
|
void KAZE_Descriptor_Invoker::Get_KAZE_Upright_Descriptor_64(const KeyPoint &kpt, float *desc) const
|
|
{
|
|
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
|
|
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
|
float sample_x = 0.0, sample_y = 0.0;
|
|
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0;
|
|
int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
|
|
float fx = 0.0, fy = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
|
|
int dsize = 0, scale = 0, level = 0;
|
|
|
|
std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
// Subregion centers for the 4x4 gaussian weighting
|
|
float cx = -0.5f, cy = 0.5f;
|
|
|
|
// Set the descriptor size and the sample and pattern sizes
|
|
dsize = 64;
|
|
sample_step = 5;
|
|
pattern_size = 12;
|
|
|
|
// Get the information from the keypoint
|
|
yf = kpt.pt.y;
|
|
xf = kpt.pt.x;
|
|
scale = cvRound(kpt.size / 2.0f);
|
|
level = kpt.class_id;
|
|
|
|
i = -8;
|
|
|
|
// Calculate descriptor for this interest point
|
|
// Area of size 24 s x 24 s
|
|
while (i < pattern_size) {
|
|
j = -8;
|
|
i = i - 4;
|
|
|
|
cx += 1.0f;
|
|
cy = -0.5f;
|
|
|
|
while (j < pattern_size) {
|
|
|
|
dx = dy = mdx = mdy = 0.0;
|
|
cy += 1.0f;
|
|
j = j - 4;
|
|
|
|
ky = i + sample_step;
|
|
kx = j + sample_step;
|
|
|
|
ys = yf + (ky*scale);
|
|
xs = xf + (kx*scale);
|
|
|
|
for (int k = i; k < i + 9; k++) {
|
|
for (int l = j; l < j + 9; l++) {
|
|
|
|
sample_y = k*scale + yf;
|
|
sample_x = l*scale + xf;
|
|
|
|
//Get the gaussian weighted x and y responses
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
|
|
|
|
y1 = (int)(sample_y - 0.5f);
|
|
x1 = (int)(sample_x - 0.5f);
|
|
|
|
checkDescriptorLimits(x1, y1, options_.img_width, options_.img_height);
|
|
|
|
y2 = (int)(sample_y + 0.5f);
|
|
x2 = (int)(sample_x + 0.5f);
|
|
|
|
checkDescriptorLimits(x2, y2, options_.img_width, options_.img_height);
|
|
|
|
fx = sample_x - x1;
|
|
fy = sample_y - y1;
|
|
|
|
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
rx = gauss_s1*rx;
|
|
ry = gauss_s1*ry;
|
|
|
|
// Sum the derivatives to the cumulative descriptor
|
|
dx += rx;
|
|
dy += ry;
|
|
mdx += fabs(rx);
|
|
mdy += fabs(ry);
|
|
}
|
|
}
|
|
|
|
// Add the values to the descriptor vector
|
|
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
|
|
|
|
desc[dcount++] = dx*gauss_s2;
|
|
desc[dcount++] = dy*gauss_s2;
|
|
desc[dcount++] = mdx*gauss_s2;
|
|
desc[dcount++] = mdy*gauss_s2;
|
|
|
|
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
|
|
|
|
j += 9;
|
|
}
|
|
|
|
i += 9;
|
|
}
|
|
|
|
// convert to unit vector
|
|
len = sqrt(len);
|
|
|
|
for (i = 0; i < dsize; i++) {
|
|
desc[i] /= len;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the descriptor of the provided keypoint given the
|
|
* main orientation of the keypoint
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
|
|
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
|
* ECCV 2008
|
|
*/
|
|
void KAZE_Descriptor_Invoker::Get_KAZE_Descriptor_64(const KeyPoint &kpt, float *desc) const
|
|
{
|
|
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
|
|
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
|
float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0;
|
|
float fx = 0.0, fy = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
|
|
int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0;
|
|
int kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
|
|
int dsize = 0, scale = 0, level = 0;
|
|
|
|
std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
// Subregion centers for the 4x4 gaussian weighting
|
|
float cx = -0.5f, cy = 0.5f;
|
|
|
|
// Set the descriptor size and the sample and pattern sizes
|
|
dsize = 64;
|
|
sample_step = 5;
|
|
pattern_size = 12;
|
|
|
|
// Get the information from the keypoint
|
|
yf = kpt.pt.y;
|
|
xf = kpt.pt.x;
|
|
scale = cvRound(kpt.size / 2.0f);
|
|
angle = kpt.angle * static_cast<float>(CV_PI / 180.f);
|
|
level = kpt.class_id;
|
|
co = cos(angle);
|
|
si = sin(angle);
|
|
|
|
i = -8;
|
|
|
|
// Calculate descriptor for this interest point
|
|
// Area of size 24 s x 24 s
|
|
while (i < pattern_size) {
|
|
|
|
j = -8;
|
|
i = i - 4;
|
|
|
|
cx += 1.0f;
|
|
cy = -0.5f;
|
|
|
|
while (j < pattern_size) {
|
|
|
|
dx = dy = mdx = mdy = 0.0;
|
|
cy += 1.0f;
|
|
j = j - 4;
|
|
|
|
ky = i + sample_step;
|
|
kx = j + sample_step;
|
|
|
|
xs = xf + (-kx*scale*si + ky*scale*co);
|
|
ys = yf + (kx*scale*co + ky*scale*si);
|
|
|
|
for (int k = i; k < i + 9; ++k) {
|
|
for (int l = j; l < j + 9; ++l) {
|
|
|
|
// Get coords of sample point on the rotated axis
|
|
sample_y = yf + (l*scale*co + k*scale*si);
|
|
sample_x = xf + (-l*scale*si + k*scale*co);
|
|
|
|
// Get the gaussian weighted x and y responses
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
|
|
y1 = cvFloor(sample_y);
|
|
x1 = cvFloor(sample_x);
|
|
|
|
checkDescriptorLimits(x1, y1, options_.img_width, options_.img_height);
|
|
|
|
y2 = y1 + 1;
|
|
x2 = x1 + 1;
|
|
|
|
checkDescriptorLimits(x2, y2, options_.img_width, options_.img_height);
|
|
|
|
fx = sample_x - x1;
|
|
fy = sample_y - y1;
|
|
|
|
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
// Get the x and y derivatives on the rotated axis
|
|
rry = gauss_s1*(rx*co + ry*si);
|
|
rrx = gauss_s1*(-rx*si + ry*co);
|
|
|
|
// Sum the derivatives to the cumulative descriptor
|
|
dx += rrx;
|
|
dy += rry;
|
|
mdx += fabs(rrx);
|
|
mdy += fabs(rry);
|
|
}
|
|
}
|
|
|
|
// Add the values to the descriptor vector
|
|
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
|
|
desc[dcount++] = dx*gauss_s2;
|
|
desc[dcount++] = dy*gauss_s2;
|
|
desc[dcount++] = mdx*gauss_s2;
|
|
desc[dcount++] = mdy*gauss_s2;
|
|
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
|
|
j += 9;
|
|
}
|
|
i += 9;
|
|
}
|
|
|
|
// convert to unit vector
|
|
len = sqrt(len);
|
|
|
|
for (i = 0; i < dsize; i++) {
|
|
desc[i] /= len;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the extended upright descriptor (not rotation invariant) of
|
|
* the provided keypoint
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 128. The descriptor is inspired
|
|
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
|
* ECCV 2008
|
|
*/
|
|
void KAZE_Descriptor_Invoker::Get_KAZE_Upright_Descriptor_128(const KeyPoint &kpt, float *desc) const
|
|
{
|
|
float gauss_s1 = 0.0, gauss_s2 = 0.0;
|
|
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
|
float sample_x = 0.0, sample_y = 0.0;
|
|
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0;
|
|
int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
|
|
float fx = 0.0, fy = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
|
|
float dxp = 0.0, dyp = 0.0, mdxp = 0.0, mdyp = 0.0;
|
|
float dxn = 0.0, dyn = 0.0, mdxn = 0.0, mdyn = 0.0;
|
|
int dsize = 0, scale = 0, level = 0;
|
|
|
|
// Subregion centers for the 4x4 gaussian weighting
|
|
float cx = -0.5f, cy = 0.5f;
|
|
|
|
std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
// Set the descriptor size and the sample and pattern sizes
|
|
dsize = 128;
|
|
sample_step = 5;
|
|
pattern_size = 12;
|
|
|
|
// Get the information from the keypoint
|
|
yf = kpt.pt.y;
|
|
xf = kpt.pt.x;
|
|
scale = cvRound(kpt.size / 2.0f);
|
|
level = kpt.class_id;
|
|
|
|
i = -8;
|
|
|
|
// Calculate descriptor for this interest point
|
|
// Area of size 24 s x 24 s
|
|
while (i < pattern_size) {
|
|
|
|
j = -8;
|
|
i = i - 4;
|
|
|
|
cx += 1.0f;
|
|
cy = -0.5f;
|
|
|
|
while (j < pattern_size) {
|
|
|
|
dxp = dxn = mdxp = mdxn = 0.0;
|
|
dyp = dyn = mdyp = mdyn = 0.0;
|
|
|
|
cy += 1.0f;
|
|
j = j - 4;
|
|
|
|
ky = i + sample_step;
|
|
kx = j + sample_step;
|
|
|
|
ys = yf + (ky*scale);
|
|
xs = xf + (kx*scale);
|
|
|
|
for (int k = i; k < i + 9; k++) {
|
|
for (int l = j; l < j + 9; l++) {
|
|
|
|
sample_y = k*scale + yf;
|
|
sample_x = l*scale + xf;
|
|
|
|
//Get the gaussian weighted x and y responses
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
|
|
|
|
y1 = (int)(sample_y - 0.5f);
|
|
x1 = (int)(sample_x - 0.5f);
|
|
|
|
checkDescriptorLimits(x1, y1, options_.img_width, options_.img_height);
|
|
|
|
y2 = (int)(sample_y + 0.5f);
|
|
x2 = (int)(sample_x + 0.5f);
|
|
|
|
checkDescriptorLimits(x2, y2, options_.img_width, options_.img_height);
|
|
|
|
fx = sample_x - x1;
|
|
fy = sample_y - y1;
|
|
|
|
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
rx = gauss_s1*rx;
|
|
ry = gauss_s1*ry;
|
|
|
|
// Sum the derivatives to the cumulative descriptor
|
|
if (ry >= 0.0) {
|
|
dxp += rx;
|
|
mdxp += fabs(rx);
|
|
}
|
|
else {
|
|
dxn += rx;
|
|
mdxn += fabs(rx);
|
|
}
|
|
|
|
if (rx >= 0.0) {
|
|
dyp += ry;
|
|
mdyp += fabs(ry);
|
|
}
|
|
else {
|
|
dyn += ry;
|
|
mdyn += fabs(ry);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the values to the descriptor vector
|
|
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
|
|
|
|
desc[dcount++] = dxp*gauss_s2;
|
|
desc[dcount++] = dxn*gauss_s2;
|
|
desc[dcount++] = mdxp*gauss_s2;
|
|
desc[dcount++] = mdxn*gauss_s2;
|
|
desc[dcount++] = dyp*gauss_s2;
|
|
desc[dcount++] = dyn*gauss_s2;
|
|
desc[dcount++] = mdyp*gauss_s2;
|
|
desc[dcount++] = mdyn*gauss_s2;
|
|
|
|
// Store the current length^2 of the vector
|
|
len += (dxp*dxp + dxn*dxn + mdxp*mdxp + mdxn*mdxn +
|
|
dyp*dyp + dyn*dyn + mdyp*mdyp + mdyn*mdyn)*gauss_s2*gauss_s2;
|
|
|
|
j += 9;
|
|
}
|
|
|
|
i += 9;
|
|
}
|
|
|
|
// convert to unit vector
|
|
len = sqrt(len);
|
|
|
|
for (i = 0; i < dsize; i++) {
|
|
desc[i] /= len;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* @brief This method computes the extended G-SURF descriptor of the provided keypoint
|
|
* given the main orientation of the keypoint
|
|
* @param kpt Input keypoint
|
|
* @param desc Descriptor vector
|
|
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 128. The descriptor is inspired
|
|
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
|
|
* ECCV 2008
|
|
*/
|
|
void KAZE_Descriptor_Invoker::Get_KAZE_Descriptor_128(const KeyPoint &kpt, float *desc) const
|
|
{
|
|
float gauss_s1 = 0.0, gauss_s2 = 0.0;
|
|
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
|
|
float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0;
|
|
float fx = 0.0, fy = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
|
|
float dxp = 0.0, dyp = 0.0, mdxp = 0.0, mdyp = 0.0;
|
|
float dxn = 0.0, dyn = 0.0, mdxn = 0.0, mdyn = 0.0;
|
|
int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0;
|
|
int kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
|
|
int dsize = 0, scale = 0, level = 0;
|
|
|
|
std::vector<TEvolution>& evolution = *evolution_;
|
|
|
|
// Subregion centers for the 4x4 gaussian weighting
|
|
float cx = -0.5f, cy = 0.5f;
|
|
|
|
// Set the descriptor size and the sample and pattern sizes
|
|
dsize = 128;
|
|
sample_step = 5;
|
|
pattern_size = 12;
|
|
|
|
// Get the information from the keypoint
|
|
yf = kpt.pt.y;
|
|
xf = kpt.pt.x;
|
|
scale = cvRound(kpt.size / 2.0f);
|
|
angle = kpt.angle * static_cast<float>(CV_PI / 180.f);
|
|
level = kpt.class_id;
|
|
co = cos(angle);
|
|
si = sin(angle);
|
|
|
|
i = -8;
|
|
|
|
// Calculate descriptor for this interest point
|
|
// Area of size 24 s x 24 s
|
|
while (i < pattern_size) {
|
|
|
|
j = -8;
|
|
i = i - 4;
|
|
|
|
cx += 1.0f;
|
|
cy = -0.5f;
|
|
|
|
while (j < pattern_size) {
|
|
|
|
dxp = dxn = mdxp = mdxn = 0.0;
|
|
dyp = dyn = mdyp = mdyn = 0.0;
|
|
|
|
cy += 1.0f;
|
|
j = j - 4;
|
|
|
|
ky = i + sample_step;
|
|
kx = j + sample_step;
|
|
|
|
xs = xf + (-kx*scale*si + ky*scale*co);
|
|
ys = yf + (kx*scale*co + ky*scale*si);
|
|
|
|
for (int k = i; k < i + 9; ++k) {
|
|
for (int l = j; l < j + 9; ++l) {
|
|
|
|
// Get coords of sample point on the rotated axis
|
|
sample_y = yf + (l*scale*co + k*scale*si);
|
|
sample_x = xf + (-l*scale*si + k*scale*co);
|
|
|
|
// Get the gaussian weighted x and y responses
|
|
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
|
|
|
|
y1 = cvFloor(sample_y);
|
|
x1 = cvFloor(sample_x);
|
|
|
|
checkDescriptorLimits(x1, y1, options_.img_width, options_.img_height);
|
|
|
|
y2 = y1 + 1;
|
|
x2 = x1 + 1;
|
|
|
|
checkDescriptorLimits(x2, y2, options_.img_width, options_.img_height);
|
|
|
|
fx = sample_x - x1;
|
|
fy = sample_y - y1;
|
|
|
|
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
|
|
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
|
|
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
|
|
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
|
|
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
|
|
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
|
|
|
|
// Get the x and y derivatives on the rotated axis
|
|
rry = gauss_s1*(rx*co + ry*si);
|
|
rrx = gauss_s1*(-rx*si + ry*co);
|
|
|
|
// Sum the derivatives to the cumulative descriptor
|
|
if (rry >= 0.0) {
|
|
dxp += rrx;
|
|
mdxp += fabs(rrx);
|
|
}
|
|
else {
|
|
dxn += rrx;
|
|
mdxn += fabs(rrx);
|
|
}
|
|
|
|
if (rrx >= 0.0) {
|
|
dyp += rry;
|
|
mdyp += fabs(rry);
|
|
}
|
|
else {
|
|
dyn += rry;
|
|
mdyn += fabs(rry);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the values to the descriptor vector
|
|
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
|
|
|
|
desc[dcount++] = dxp*gauss_s2;
|
|
desc[dcount++] = dxn*gauss_s2;
|
|
desc[dcount++] = mdxp*gauss_s2;
|
|
desc[dcount++] = mdxn*gauss_s2;
|
|
desc[dcount++] = dyp*gauss_s2;
|
|
desc[dcount++] = dyn*gauss_s2;
|
|
desc[dcount++] = mdyp*gauss_s2;
|
|
desc[dcount++] = mdyn*gauss_s2;
|
|
|
|
// Store the current length^2 of the vector
|
|
len += (dxp*dxp + dxn*dxn + mdxp*mdxp + mdxn*mdxn +
|
|
dyp*dyp + dyn*dyn + mdyp*mdyp + mdyn*mdyn)*gauss_s2*gauss_s2;
|
|
|
|
j += 9;
|
|
}
|
|
|
|
i += 9;
|
|
}
|
|
|
|
// convert to unit vector
|
|
len = sqrt(len);
|
|
|
|
for (i = 0; i < dsize; i++) {
|
|
desc[i] /= len;
|
|
}
|
|
}
|
|
|
|
}
|