opencv/modules/cudafeatures2d/src/fast.cpp
Roman Donchenko 95a55453df Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts:
	modules/calib3d/perf/perf_pnp.cpp
	modules/contrib/src/imagelogpolprojection.cpp
	modules/contrib/src/templatebuffer.hpp
	modules/core/perf/opencl/perf_gemm.cpp
	modules/cudafeatures2d/doc/feature_detection_and_description.rst
	modules/cudafeatures2d/perf/perf_features2d.cpp
	modules/cudafeatures2d/src/fast.cpp
	modules/cudafeatures2d/test/test_features2d.cpp
	modules/features2d/doc/feature_detection_and_description.rst
	modules/features2d/include/opencv2/features2d/features2d.hpp
	modules/features2d/perf/opencl/perf_brute_force_matcher.cpp
	modules/gpu/include/opencv2/gpu/gpu.hpp
	modules/gpu/perf/perf_imgproc.cpp
	modules/gpu/perf4au/main.cpp
	modules/imgproc/perf/opencl/perf_blend.cpp
	modules/imgproc/perf/opencl/perf_color.cpp
	modules/imgproc/perf/opencl/perf_moments.cpp
	modules/imgproc/perf/opencl/perf_pyramid.cpp
	modules/objdetect/perf/opencl/perf_hogdetect.cpp
	modules/ocl/perf/perf_arithm.cpp
	modules/ocl/perf/perf_bgfg.cpp
	modules/ocl/perf/perf_blend.cpp
	modules/ocl/perf/perf_brute_force_matcher.cpp
	modules/ocl/perf/perf_canny.cpp
	modules/ocl/perf/perf_filters.cpp
	modules/ocl/perf/perf_gftt.cpp
	modules/ocl/perf/perf_haar.cpp
	modules/ocl/perf/perf_imgproc.cpp
	modules/ocl/perf/perf_imgwarp.cpp
	modules/ocl/perf/perf_match_template.cpp
	modules/ocl/perf/perf_matrix_operation.cpp
	modules/ocl/perf/perf_ml.cpp
	modules/ocl/perf/perf_moments.cpp
	modules/ocl/perf/perf_opticalflow.cpp
	modules/ocl/perf/perf_precomp.hpp
	modules/ocl/src/cl_context.cpp
	modules/ocl/src/opencl/haarobjectdetect.cl
	modules/video/src/lkpyramid.cpp
	modules/video/src/precomp.hpp
	samples/gpu/morphology.cpp
2014-03-11 17:20:01 +04:00

171 lines
6.2 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
cv::cuda::FAST_CUDA::FAST_CUDA(int, bool, double) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::operator ()(const GpuMat&, const GpuMat&, GpuMat&) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::operator ()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::downloadKeypoints(const GpuMat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::convertKeypoints(const Mat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
void cv::cuda::FAST_CUDA::release() { throw_no_cuda(); }
int cv::cuda::FAST_CUDA::calcKeyPointsLocation(const GpuMat&, const GpuMat&) { throw_no_cuda(); return 0; }
int cv::cuda::FAST_CUDA::getKeyPoints(GpuMat&) { throw_no_cuda(); return 0; }
#else /* !defined (HAVE_CUDA) */
cv::cuda::FAST_CUDA::FAST_CUDA(int _threshold, bool _nonmaxSuppression, double _keypointsRatio) :
nonmaxSuppression(_nonmaxSuppression), threshold(_threshold), keypointsRatio(_keypointsRatio), count_(0)
{
}
void cv::cuda::FAST_CUDA::operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
{
if (image.empty())
return;
(*this)(image, mask, d_keypoints_);
downloadKeypoints(d_keypoints_, keypoints);
}
void cv::cuda::FAST_CUDA::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)
{
if (d_keypoints.empty())
return;
Mat h_keypoints(d_keypoints);
convertKeypoints(h_keypoints, keypoints);
}
void cv::cuda::FAST_CUDA::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints)
{
if (h_keypoints.empty())
return;
CV_Assert(h_keypoints.rows == ROWS_COUNT && h_keypoints.elemSize() == 4);
int npoints = h_keypoints.cols;
keypoints.resize(npoints);
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);
for (int i = 0; i < npoints; ++i)
{
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
keypoints[i] = kp;
}
}
void cv::cuda::FAST_CUDA::operator ()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints)
{
calcKeyPointsLocation(img, mask);
keypoints.cols = getKeyPoints(keypoints);
}
namespace cv { namespace cuda { namespace device
{
namespace fast
{
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold);
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response);
}
}}}
int cv::cuda::FAST_CUDA::calcKeyPointsLocation(const GpuMat& img, const GpuMat& mask)
{
using namespace cv::cuda::device::fast;
CV_Assert(img.type() == CV_8UC1);
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()));
int maxKeypoints = static_cast<int>(keypointsRatio * img.size().area());
ensureSizeIsEnough(1, maxKeypoints, CV_16SC2, kpLoc_);
if (nonmaxSuppression)
{
ensureSizeIsEnough(img.size(), CV_32SC1, score_);
score_.setTo(Scalar::all(0));
}
count_ = calcKeypoints_gpu(img, mask, kpLoc_.ptr<short2>(), maxKeypoints, nonmaxSuppression ? score_ : PtrStepSzi(), threshold);
count_ = std::min(count_, maxKeypoints);
return count_;
}
int cv::cuda::FAST_CUDA::getKeyPoints(GpuMat& keypoints)
{
using namespace cv::cuda::device::fast;
if (count_ == 0)
return 0;
ensureSizeIsEnough(ROWS_COUNT, count_, CV_32FC1, keypoints);
if (nonmaxSuppression)
return nonmaxSuppression_gpu(kpLoc_.ptr<short2>(), count_, score_, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW));
GpuMat locRow(1, count_, kpLoc_.type(), keypoints.ptr(0));
kpLoc_.colRange(0, count_).copyTo(locRow);
keypoints.row(1).setTo(Scalar::all(0));
return count_;
}
void cv::cuda::FAST_CUDA::release()
{
kpLoc_.release();
score_.release();
d_keypoints_.release();
}
#endif /* !defined (HAVE_CUDA) */