opencv/samples/winrt/OcvImageProcessing/OcvImageProcessing/MainPage.xaml.cpp

189 lines
5.5 KiB
C++

//
// MainPage.xaml.cpp
// Implementation of the MainPage class.
//
#include "pch.h"
#include "MainPage.xaml.h"
#include <ppltasks.h>
#include <wrl\client.h>
#include <Robuffer.h>
#include <vector>
using namespace OcvImageProcessing;
using namespace Microsoft::WRL;
using namespace concurrency;
using namespace Platform;
using namespace Windows::Foundation;
using namespace Windows::Storage::Streams;
using namespace Windows::UI::Xaml::Media::Imaging;
using namespace Windows::Graphics::Imaging;
using namespace Windows::Foundation::Collections;
using namespace Windows::UI::Xaml;
using namespace Windows::UI::Xaml::Controls;
using namespace Windows::UI::Xaml::Controls::Primitives;
using namespace Windows::UI::Xaml::Data;
using namespace Windows::UI::Xaml::Input;
using namespace Windows::UI::Xaml::Media;
using namespace Windows::UI::Xaml::Navigation;
Uri^ InputImageUri = ref new Uri(L"ms-appx:///Assets/Lena.png");
// The Blank Page item template is documented at http://go.microsoft.com/fwlink/?LinkId=234238
MainPage::MainPage()
{
InitializeComponent();
RandomAccessStreamReference^ streamRef = RandomAccessStreamReference::CreateFromUri(InputImageUri);
task<IRandomAccessStreamWithContentType^> (streamRef->OpenReadAsync()).
then([](task<IRandomAccessStreamWithContentType^> thisTask)
{
IRandomAccessStreamWithContentType^ fileStream = thisTask.get();
return BitmapDecoder::CreateAsync(fileStream);
}).
then([](task<BitmapDecoder^> thisTask)
{
BitmapDecoder^ decoder = thisTask.get();
return decoder->GetFrameAsync(0);
}).
then([this](task<BitmapFrame^> thisTask)
{
BitmapFrame^ frame = thisTask.get();
// Save some information as fields
frameWidth = frame->PixelWidth;
frameHeight = frame->PixelHeight;
return frame->GetPixelDataAsync();
}).
then([this](task<PixelDataProvider^> thisTask)
{
PixelDataProvider^ pixelProvider = thisTask.get();
Platform::Array<byte>^ srcPixels = pixelProvider->DetachPixelData();
Lena = cv::Mat(frameHeight, frameWidth, CV_8UC4);
memcpy(Lena.data, srcPixels->Data, 4*frameWidth*frameHeight);
UpdateImage(Lena);
});
}
/// <summary>
/// Invoked when this page is about to be displayed in a Frame.
/// </summary>
/// <param name="e">Event data that describes how this page was reached. The Parameter
/// property is typically used to configure the page.</param>
void MainPage::OnNavigatedTo(NavigationEventArgs^ e)
{
(void) e; // Unused parameter
}
void OcvImageProcessing::MainPage::UpdateImage(const cv::Mat& image)
{
// Create the WriteableBitmap
WriteableBitmap^ bitmap = ref new WriteableBitmap(image.cols, image.rows);
// Get access to the pixels
IBuffer^ buffer = bitmap->PixelBuffer;
unsigned char* dstPixels;
// Obtain IBufferByteAccess
ComPtr<IBufferByteAccess> pBufferByteAccess;
ComPtr<IUnknown> pBuffer((IUnknown*)buffer);
pBuffer.As(&pBufferByteAccess);
// Get pointer to pixel bytes
pBufferByteAccess->Buffer(&dstPixels);
memcpy(dstPixels, image.data, 4*image.cols*image.rows);
// Set the bitmap to the Image element
PreviewWidget->Source = bitmap;}
cv::Mat OcvImageProcessing::MainPage::ApplyGrayFilter(const cv::Mat& image)
{
cv::Mat result;
cv::Mat intermediateMat;
cv::cvtColor(image, intermediateMat, CV_RGBA2GRAY);
cv::cvtColor(intermediateMat, result, CV_GRAY2BGRA);
return result;
}
cv::Mat OcvImageProcessing::MainPage::ApplyCannyFilter(const cv::Mat& image)
{
cv::Mat result;
cv::Mat intermediateMat;
cv::Canny(image, intermediateMat, 80, 90);
cv::cvtColor(intermediateMat, result, CV_GRAY2BGRA);
return result;
}
cv::Mat OcvImageProcessing::MainPage::ApplyBlurFilter(const cv::Mat& image)
{
cv::Mat result;
cv::blur(image, result, cv::Size(3,3));
return result;
}
cv::Mat OcvImageProcessing::MainPage::ApplyFindFeaturesFilter(const cv::Mat& image)
{
cv::Mat result;
cv::Mat intermediateMat;
cv::FastFeatureDetector detector(50);
std::vector<cv::KeyPoint> features;
image.copyTo(result);
cv::cvtColor(image, intermediateMat, CV_RGBA2GRAY);
detector.detect(intermediateMat, features);
for( unsigned int i = 0; i < std::min(features.size(), (size_t)50); i++ )
{
const cv::KeyPoint& kp = features[i];
cv::circle(result, cv::Point((int)kp.pt.x, (int)kp.pt.y), 10, cv::Scalar(255,0,0,255));
}
return result;
}
cv::Mat OcvImageProcessing::MainPage::ApplySepiaFilter(const cv::Mat& image)
{
const float SepiaKernelData[16] =
{
/* B */0.131f, 0.534f, 0.272f, 0.f,
/* G */0.168f, 0.686f, 0.349f, 0.f,
/* R */0.189f, 0.769f, 0.393f, 0.f,
/* A */0.000f, 0.000f, 0.000f, 1.f
};
const cv::Mat SepiaKernel(4, 4, CV_32FC1, (void*)SepiaKernelData);
cv::Mat result;
cv::transform(image, result, SepiaKernel);
return result;
}
void OcvImageProcessing::MainPage::Button_Click(Platform::Object^ sender, Windows::UI::Xaml::RoutedEventArgs^ e)
{
switch(FilterTypeWidget->SelectedIndex)
{
case PREVIEW:
UpdateImage(Lena);
break;
case GRAY:
UpdateImage(ApplyGrayFilter(Lena));
break;
case CANNY:
UpdateImage(ApplyCannyFilter(Lena));
break;
case BLUR:
UpdateImage(ApplyBlurFilter(Lena));
break;
case FEATURES:
UpdateImage(ApplyFindFeaturesFilter(Lena));
break;
case SEPIA:
UpdateImage(ApplySepiaFilter(Lena));
break;
default:
UpdateImage(Lena);
}
}