221 lines
8.2 KiB
C++
221 lines
8.2 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other GpuMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "gputest.hpp"
|
|
#include <string>
|
|
#include <iostream>
|
|
|
|
//#define SHOW_TIME
|
|
|
|
#ifdef SHOW_TIME
|
|
#include <ctime>
|
|
#define F(x)
|
|
#else
|
|
#define F(x)
|
|
#endif
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
struct CV_GpuMatchTemplateTest: CvTest
|
|
{
|
|
CV_GpuMatchTemplateTest(): CvTest("GPU-MatchTemplateTest", "matchTemplate") {}
|
|
|
|
void run(int)
|
|
{
|
|
try
|
|
{
|
|
Mat image, templ;
|
|
Mat dst_gold;
|
|
gpu::GpuMat dst;
|
|
int n, m, h, w;
|
|
F(clock_t t;)
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
n = 1 + rand() % 2000;
|
|
m = 1 + rand() % 1000;
|
|
do h = 1 + rand() % 30; while (h > n);
|
|
do w = 1 + rand() % 30; while (w > m);
|
|
|
|
//cout << "w: " << w << " h: " << h << endl;
|
|
|
|
gen(image, n, m, CV_8U);
|
|
gen(templ, h, w, CV_8U);
|
|
F(t = clock();)
|
|
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF);
|
|
F(cout << "cpu:" << clock() - t << endl;)
|
|
F(t = clock();)
|
|
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF);
|
|
F(cout << "gpu_block: " << clock() - t << endl;)
|
|
if (!check(dst_gold, Mat(dst), 5 * h * w * 1e-5f)) return;
|
|
|
|
gen(image, n, m, CV_8U);
|
|
gen(templ, h, w, CV_8U);
|
|
F(t = clock();)
|
|
matchTemplate(image, templ, dst_gold, CV_TM_CCORR);
|
|
F(cout << "cpu:" << clock() - t << endl;)
|
|
F(t = clock();)
|
|
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR);
|
|
F(cout << "gpu_block: " << clock() - t << endl;)
|
|
if (!check(dst_gold, Mat(dst), 5 * h * w * 1e-5f)) return;
|
|
|
|
gen(image, n, m, CV_32F);
|
|
gen(templ, h, w, CV_32F);
|
|
F(t = clock();)
|
|
matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF);
|
|
F(cout << "cpu:" << clock() - t << endl;)
|
|
F(t = clock();)
|
|
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF);
|
|
F(cout << "gpu_block: " << clock() - t << endl;)
|
|
if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f)) return;
|
|
|
|
gen(image, n, m, CV_32F);
|
|
gen(templ, h, w, CV_32F);
|
|
F(t = clock();)
|
|
matchTemplate(image, templ, dst_gold, CV_TM_CCORR);
|
|
F(cout << "cpu:" << clock() - t << endl;)
|
|
F(t = clock();)
|
|
gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR);
|
|
F(cout << "gpu_block: " << clock() - t << endl;)
|
|
if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f)) return;
|
|
}
|
|
}
|
|
catch (const Exception& e)
|
|
{
|
|
ts->printf(CvTS::CONSOLE, e.what());
|
|
if (!check_and_treat_gpu_exception(e, ts)) throw;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void gen(Mat& a, int rows, int cols, int type)
|
|
{
|
|
RNG rng;
|
|
a.create(rows, cols, type);
|
|
if (type == CV_8U)
|
|
rng.fill(a, RNG::UNIFORM, Scalar(0), Scalar(10));
|
|
else if (type == CV_32F)
|
|
rng.fill(a, RNG::UNIFORM, Scalar(0.f), Scalar(1.f));
|
|
}
|
|
|
|
bool check(const Mat& a, const Mat& b, float max_err)
|
|
{
|
|
if (a.size() != b.size())
|
|
{
|
|
ts->printf(CvTS::CONSOLE, "bad size");
|
|
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
|
|
return false;
|
|
}
|
|
|
|
float err = (float)norm(a, b, NORM_INF);
|
|
if (err > max_err)
|
|
{
|
|
ts->printf(CvTS::CONSOLE, "bad accuracy: %f\n", err);
|
|
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
|
|
return false;
|
|
}
|
|
|
|
//// Debug check
|
|
//for (int i = 0; i < a.rows; ++i)
|
|
//{
|
|
// for (int j = 0; j < a.cols; ++j)
|
|
// {
|
|
// float v1 = a.at<float>(i, j);
|
|
// float v2 = b.at<float>(i, j);
|
|
// if (fabs(v1 - v2) > max_err)
|
|
// {
|
|
// ts->printf(CvTS::CONSOLE, "%d %d %f %f\n", i, j, v1, v2);
|
|
// cin.get();
|
|
// }
|
|
// }
|
|
//}
|
|
|
|
return true;
|
|
}
|
|
|
|
//void match_template_naive_SQDIFF(const Mat& a, const Mat& b, Mat& c)
|
|
//{
|
|
// c.create(a.rows - b.rows + 1, a.cols - b.cols + 1, CV_32F);
|
|
// for (int i = 0; i < c.rows; ++i)
|
|
// {
|
|
// for (int j = 0; j < c.cols; ++j)
|
|
// {
|
|
// float delta;
|
|
// float sum = 0.f;
|
|
// for (int y = 0; y < b.rows; ++y)
|
|
// {
|
|
// const unsigned char* arow = a.ptr(i + y);
|
|
// const unsigned char* brow = b.ptr(y);
|
|
// for (int x = 0; x < b.cols; ++x)
|
|
// {
|
|
// delta = (float)(arow[j + x] - brow[x]);
|
|
// sum += delta * delta;
|
|
// }
|
|
// }
|
|
// c.at<float>(i, j) = sum;
|
|
// }
|
|
// }
|
|
//}
|
|
|
|
//void match_template_naive_CCORR(const Mat& a, const Mat& b, Mat& c)
|
|
//{
|
|
// c.create(a.rows - b.rows + 1, a.cols - b.cols + 1, CV_32F);
|
|
// for (int i = 0; i < c.rows; ++i)
|
|
// {
|
|
// for (int j = 0; j < c.cols; ++j)
|
|
// {
|
|
// float sum = 0.f;
|
|
// for (int y = 0; y < b.rows; ++y)
|
|
// {
|
|
// const float* arow = a.ptr<float>(i + y);
|
|
// const float* brow = b.ptr<float>(y);
|
|
// for (int x = 0; x < b.cols; ++x)
|
|
// sum += arow[j + x] * brow[x];
|
|
// }
|
|
// c.at<float>(i, j) = sum;
|
|
// }
|
|
// }
|
|
//}
|
|
} match_template_test;
|
|
|