148 lines
4.5 KiB
C++
148 lines
4.5 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "cvtest.h"
|
|
|
|
#if 0
|
|
|
|
/* Testing parameters */
|
|
static char TestName[] = "State estimation of linear system by means of ConDens Algorithm";
|
|
static char TestClass[] = "Algorithm";
|
|
static int Dim;
|
|
static int Steps;
|
|
static int SamplesNum;
|
|
|
|
static int read_param = 0;
|
|
static double EPSILON = 1.000;
|
|
|
|
static void CondProbDens(CvConDensation* CD, float* Measurement)
|
|
{
|
|
float Prob = 1;
|
|
for(int i = 0; i < CD->SamplesNum;i++)
|
|
{
|
|
|
|
Prob =1;
|
|
for(int j =0; j < CD->DP;j++)
|
|
{
|
|
Prob*=(float)exp(-0.05*(Measurement[j] - CD->flSamples[i][j])*(Measurement[j]-CD->flSamples[i][j]));
|
|
}
|
|
|
|
CD->flConfidence[i] = Prob;
|
|
}
|
|
|
|
}
|
|
static int fcaConDens( void )
|
|
{
|
|
AtsRandState noisegen;
|
|
AtsRandState dynam;
|
|
double Error = 0;
|
|
CvConDensation* ConDens;
|
|
|
|
/* Initialization global parameters */
|
|
if( !read_param )
|
|
{
|
|
read_param = 1;
|
|
/* Reading test-parameters */
|
|
trsiRead( &Dim,"7","Dimension of dynamical system");
|
|
trsiRead( &Steps,"100","Length of trajectory to track");
|
|
trsiRead( &SamplesNum,"64","Length of trajectory to track");
|
|
}
|
|
CvMat Sample = cvMat(Dim,1,CV_MAT32F,NULL);
|
|
CvMat Temp = cvMat(Dim,1,CV_MAT32F,NULL);
|
|
CvMat LB = cvMat(Dim,1,CV_MAT32F,NULL);
|
|
CvMat UB = cvMat(Dim,1,CV_MAT32F,NULL);
|
|
cvmAlloc(&LB);
|
|
cvmAlloc(&UB);
|
|
cvmAlloc(&Sample);
|
|
cvmAlloc(&Temp);
|
|
ConDens = cvCreateConDensation(Dim, Dim,SamplesNum);
|
|
CvMat Dyn = cvMat(Dim,Dim,CV_MAT32F,ConDens->DynamMatr);
|
|
atsRandInit(&dynam,-1.0, 1.0, 1);
|
|
atsRandInit(&noisegen,-0.1, 0.1, 2);
|
|
cvmSetIdentity(&Dyn);
|
|
atsbRand32f(&dynam,Sample.data.fl,Dim);
|
|
int i;
|
|
for(i = 0; i<Dim; i++)
|
|
{
|
|
LB.data.fl[i] = -1.0f;
|
|
UB.data.fl[i] = 1.0f;
|
|
}
|
|
cvConDensInitSampleSet(ConDens,&LB,&UB);
|
|
CondProbDens(ConDens,Sample.data.fl);
|
|
for( i = 0; i<Steps; i++)
|
|
{
|
|
cvConDensUpdateByTime(ConDens);
|
|
int j;
|
|
for(j = 0; j<Dim; j++)
|
|
{
|
|
float t = 0;
|
|
for(int k=0; k<Dim; k++)
|
|
{
|
|
t += Dyn.data.fl[j*Dim+k]*Sample.data.fl[k];
|
|
}
|
|
Temp.data.fl[j]= t+atsRand32f(&noisegen);
|
|
}
|
|
|
|
for(j = 0; j<Dim; j++)
|
|
{
|
|
Sample.data.fl[j] = Temp.data.fl[j];
|
|
}
|
|
CondProbDens(ConDens,Temp.data.fl);
|
|
}
|
|
Error = atsCompSinglePrec(Sample.data.fl,ConDens->State,Dim,EPSILON);
|
|
cvmFree(&Sample);
|
|
cvmFree(&Temp);
|
|
cvmFree(&LB);
|
|
cvmFree(&UB);
|
|
cvReleaseConDensation(&ConDens);
|
|
if(Error>=EPSILON)return TRS_FAIL;
|
|
return TRS_OK;
|
|
} /* fcaSobel8uC1R */
|
|
void InitAConDens(void)
|
|
{
|
|
trsReg( "Condensation Algorithm", TestName, TestClass, fcaConDens);
|
|
|
|
} /* InitASobel */
|
|
|
|
/* End of file. */
|
|
|
|
#endif
|