opencv/modules/dnn/src/int8layers/reduce_layer.cpp
2022-03-18 10:19:13 +08:00

214 lines
6.3 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <algorithm>
#include <stdlib.h>
#include <numeric>
namespace cv
{
namespace dnn
{
class ReduceLayerInt8Impl CV_FINAL : public ReduceLayerInt8
{
public:
ReduceLayerInt8Impl(const LayerParams& params)
{
// Set reduce type
CV_Assert(params.has("reduce"));
String typeString = toLowerCase(params.get<String>("reduce"));
if (typeString == "max")
reduceType = MAX;
else if (typeString == "min")
reduceType = MIN;
else
CV_Error(Error::StsBadArg, "Unknown reduce type \"" + typeString + "\"");
// Set deleted dims
CV_Assert(params.has("deleted_dims"));
DictValue tempDims = params.get("deleted_dims");
int i, n = tempDims.size();
reduceDims.resize(n);
for (i = 0; i < n; i++)
{
reduceDims[i] = tempDims.get<int>(i);
}
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
if (backendId == DNN_BACKEND_OPENCV)
{
return true;
}
return false;
}
// reduceType == MIN
struct ReduceOpMIN
{
int8_t apply(const int8_t* first, const int8_t* last)
{
return std::accumulate(first, last, *first,
[](int8_t a, int8_t b)
{
return std::min(a, b);
});
}
};
// reduceType == MAX
struct ReduceOpMAX
{
int8_t apply(const int8_t* first, const int8_t* last)
{
return std::accumulate(first, last, *first,
[](int8_t a, int8_t b)
{
return std::max(a, b);
});
}
};
template<typename Func>
class ReduceInvoker : public ParallelLoopBody
{
public:
const Mat* src;
Mat *dst;
std::vector<size_t> reduceDims;
int nstripes;
int reduceType;
Ptr<Func> func;
ReduceInvoker() : src(0), dst(0), nstripes(0), reduceType(MAX), func(makePtr<Func>()) {}
static void run(const Mat& src, Mat& dst, std::vector<size_t> reduceDims, int reduceType, int nstripes)
{
CV_Assert_N(src.isContinuous(), dst.isContinuous(), src.type() == CV_8S, src.type() == dst.type());
ReduceInvoker<Func> p;
p.src = &src;
p.dst = &dst;
p.reduceDims = reduceDims;
p.nstripes = nstripes;
p.reduceType = reduceType;
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE
{
size_t total = dst->total();
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, total);
size_t totalDeleted = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies<size_t>());
int8_t *dstData = (int8_t *)dst->data;
int8_t *srcData = (int8_t *)src->data;
for (size_t ofs = stripeStart; ofs < stripeEnd;)
{
const int8_t* first = srcData + ofs * totalDeleted;
const int8_t* last = srcData + (ofs + 1) * totalDeleted;
dstData[ofs] = func->apply(first, last);
ofs += 1;
}
}
};
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(inputs.size() == 1);
const int nstripes = getNumThreads();
switch (reduceType)
{
case MIN:
{
ReduceInvoker<ReduceOpMIN>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes);
break;
}
case MAX:
{
ReduceInvoker<ReduceOpMAX>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes);
break;
}
default:
CV_Error(Error::StsNotImplemented, "Not implemented");
break;
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() > 0);
CV_Assert(reduceDims.size() != 0 && inputs[0].size() >= reduceDims.size());
std::vector<int> outShape;
if (inputs[0].size() == reduceDims.size())
outShape.push_back(1);
else
{
for (int i = 0; i < inputs[0].size() - reduceDims.size(); i++)
{
outShape.push_back(inputs[0][i]);
}
}
outputs.assign(1, outShape);
return false;
}
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
return false;
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(inputs); // suppress unused variable warning
long flops = 0;
size_t totalDeleted = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies<size_t>());
for (int i = 0; i < outputs.size(); i++)
{
flops += total(outputs[i])*(totalDeleted);
}
return flops;
}
private:
enum Type
{
MAX,
MIN
};
};
Ptr<ReduceLayerInt8> ReduceLayerInt8::create(const LayerParams& params)
{
return Ptr<ReduceLayerInt8>(new ReduceLayerInt8Impl(params));
}
}
}