214 lines
6.3 KiB
C++
214 lines
6.3 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <stdlib.h>
|
|
#include <numeric>
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class ReduceLayerInt8Impl CV_FINAL : public ReduceLayerInt8
|
|
{
|
|
public:
|
|
ReduceLayerInt8Impl(const LayerParams& params)
|
|
{
|
|
// Set reduce type
|
|
CV_Assert(params.has("reduce"));
|
|
String typeString = toLowerCase(params.get<String>("reduce"));
|
|
if (typeString == "max")
|
|
reduceType = MAX;
|
|
else if (typeString == "min")
|
|
reduceType = MIN;
|
|
else
|
|
CV_Error(Error::StsBadArg, "Unknown reduce type \"" + typeString + "\"");
|
|
|
|
// Set deleted dims
|
|
CV_Assert(params.has("deleted_dims"));
|
|
DictValue tempDims = params.get("deleted_dims");
|
|
int i, n = tempDims.size();
|
|
reduceDims.resize(n);
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
reduceDims[i] = tempDims.get<int>(i);
|
|
}
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
if (backendId == DNN_BACKEND_OPENCV)
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// reduceType == MIN
|
|
struct ReduceOpMIN
|
|
{
|
|
int8_t apply(const int8_t* first, const int8_t* last)
|
|
{
|
|
return std::accumulate(first, last, *first,
|
|
[](int8_t a, int8_t b)
|
|
{
|
|
return std::min(a, b);
|
|
});
|
|
}
|
|
};
|
|
|
|
// reduceType == MAX
|
|
struct ReduceOpMAX
|
|
{
|
|
int8_t apply(const int8_t* first, const int8_t* last)
|
|
{
|
|
return std::accumulate(first, last, *first,
|
|
[](int8_t a, int8_t b)
|
|
{
|
|
return std::max(a, b);
|
|
});
|
|
}
|
|
};
|
|
|
|
template<typename Func>
|
|
class ReduceInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
const Mat* src;
|
|
Mat *dst;
|
|
std::vector<size_t> reduceDims;
|
|
int nstripes;
|
|
int reduceType;
|
|
Ptr<Func> func;
|
|
|
|
ReduceInvoker() : src(0), dst(0), nstripes(0), reduceType(MAX), func(makePtr<Func>()) {}
|
|
|
|
static void run(const Mat& src, Mat& dst, std::vector<size_t> reduceDims, int reduceType, int nstripes)
|
|
{
|
|
CV_Assert_N(src.isContinuous(), dst.isContinuous(), src.type() == CV_8S, src.type() == dst.type());
|
|
|
|
ReduceInvoker<Func> p;
|
|
|
|
p.src = &src;
|
|
p.dst = &dst;
|
|
|
|
p.reduceDims = reduceDims;
|
|
p.nstripes = nstripes;
|
|
p.reduceType = reduceType;
|
|
|
|
parallel_for_(Range(0, nstripes), p, nstripes);
|
|
}
|
|
|
|
void operator()(const Range& r) const CV_OVERRIDE
|
|
{
|
|
size_t total = dst->total();
|
|
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
|
size_t stripeStart = r.start*stripeSize;
|
|
size_t stripeEnd = std::min(r.end*stripeSize, total);
|
|
size_t totalDeleted = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies<size_t>());
|
|
|
|
int8_t *dstData = (int8_t *)dst->data;
|
|
int8_t *srcData = (int8_t *)src->data;
|
|
|
|
for (size_t ofs = stripeStart; ofs < stripeEnd;)
|
|
{
|
|
const int8_t* first = srcData + ofs * totalDeleted;
|
|
const int8_t* last = srcData + (ofs + 1) * totalDeleted;
|
|
|
|
dstData[ofs] = func->apply(first, last);
|
|
ofs += 1;
|
|
}
|
|
}
|
|
};
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
CV_Assert(inputs.size() == 1);
|
|
const int nstripes = getNumThreads();
|
|
|
|
switch (reduceType)
|
|
{
|
|
case MIN:
|
|
{
|
|
ReduceInvoker<ReduceOpMIN>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes);
|
|
break;
|
|
}
|
|
case MAX:
|
|
{
|
|
ReduceInvoker<ReduceOpMAX>::run(inputs[0], outputs[0], reduceDims, reduceType, nstripes);
|
|
break;
|
|
}
|
|
default:
|
|
CV_Error(Error::StsNotImplemented, "Not implemented");
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() > 0);
|
|
CV_Assert(reduceDims.size() != 0 && inputs[0].size() >= reduceDims.size());
|
|
|
|
std::vector<int> outShape;
|
|
if (inputs[0].size() == reduceDims.size())
|
|
outShape.push_back(1);
|
|
else
|
|
{
|
|
for (int i = 0; i < inputs[0].size() - reduceDims.size(); i++)
|
|
{
|
|
outShape.push_back(inputs[0][i]);
|
|
}
|
|
}
|
|
outputs.assign(1, outShape);
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
|
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
|
|
{
|
|
return false;
|
|
}
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
|
{
|
|
CV_UNUSED(inputs); // suppress unused variable warning
|
|
long flops = 0;
|
|
size_t totalDeleted = std::accumulate(reduceDims.begin(), reduceDims.end(), 1, std::multiplies<size_t>());
|
|
for (int i = 0; i < outputs.size(); i++)
|
|
{
|
|
flops += total(outputs[i])*(totalDeleted);
|
|
}
|
|
return flops;
|
|
}
|
|
private:
|
|
enum Type
|
|
{
|
|
MAX,
|
|
MIN
|
|
};
|
|
};
|
|
|
|
Ptr<ReduceLayerInt8> ReduceLayerInt8::create(const LayerParams& params)
|
|
{
|
|
return Ptr<ReduceLayerInt8>(new ReduceLayerInt8Impl(params));
|
|
}
|
|
|
|
}
|
|
}
|