PR #2968:cce2d998578f9cFixed bug which caused crash of GPU version of feature matcher in stitcher The bug caused crash of GPU version of feature matcher in stitcher when we use ORB features. PR #3236:5947519Check sure that we're not already below required leaf false alarm rate before continuing to get negative samples. PR #3190 fix blobdetector PR #3562 (part):82bd82eTBB updated to 4.3u2. Fix for aarch64 support. PR #3604 (part):091c7a3OpenGL interop sample reworked not ot use cvconfig.h PR #3792:afdf319Add -L for CUDA libs path to pkg-config Add all dirs from CUDA_LIBS_PATH as -L linker options to OPENCV_LINKER_LIBS. These will end up in opencv.pc. PR #3893:122b9f8Turn ocv_convert_to_lib_name into a function PR #5490:ec5244afixed memory leak in findHomography tests PR #5491:0d5b739delete video readers PR #5574 PR #5202
378 lines
12 KiB
C++
378 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <iterator>
|
|
#include <limits>
|
|
|
|
//#define DEBUG_BLOB_DETECTOR
|
|
|
|
#ifdef DEBUG_BLOB_DETECTOR
|
|
# include "opencv2/opencv_modules.hpp"
|
|
# ifdef HAVE_OPENCV_HIGHGUI
|
|
# include "opencv2/highgui.hpp"
|
|
# else
|
|
# undef DEBUG_BLOB_DETECTOR
|
|
# endif
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
|
|
class CV_EXPORTS_W SimpleBlobDetectorImpl : public SimpleBlobDetector
|
|
{
|
|
public:
|
|
|
|
explicit SimpleBlobDetectorImpl(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
|
|
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
struct CV_EXPORTS Center
|
|
{
|
|
Point2d location;
|
|
double radius;
|
|
double confidence;
|
|
};
|
|
|
|
virtual void detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() );
|
|
virtual void findBlobs(InputArray image, InputArray binaryImage, std::vector<Center> ¢ers) const;
|
|
|
|
Params params;
|
|
};
|
|
|
|
/*
|
|
* SimpleBlobDetector
|
|
*/
|
|
SimpleBlobDetector::Params::Params()
|
|
{
|
|
thresholdStep = 10;
|
|
minThreshold = 50;
|
|
maxThreshold = 220;
|
|
minRepeatability = 2;
|
|
minDistBetweenBlobs = 10;
|
|
|
|
filterByColor = true;
|
|
blobColor = 0;
|
|
|
|
filterByArea = true;
|
|
minArea = 25;
|
|
maxArea = 5000;
|
|
|
|
filterByCircularity = false;
|
|
minCircularity = 0.8f;
|
|
maxCircularity = std::numeric_limits<float>::max();
|
|
|
|
filterByInertia = true;
|
|
//minInertiaRatio = 0.6;
|
|
minInertiaRatio = 0.1f;
|
|
maxInertiaRatio = std::numeric_limits<float>::max();
|
|
|
|
filterByConvexity = true;
|
|
//minConvexity = 0.8;
|
|
minConvexity = 0.95f;
|
|
maxConvexity = std::numeric_limits<float>::max();
|
|
}
|
|
|
|
void SimpleBlobDetector::Params::read(const cv::FileNode& fn )
|
|
{
|
|
thresholdStep = fn["thresholdStep"];
|
|
minThreshold = fn["minThreshold"];
|
|
maxThreshold = fn["maxThreshold"];
|
|
|
|
minRepeatability = (size_t)(int)fn["minRepeatability"];
|
|
minDistBetweenBlobs = fn["minDistBetweenBlobs"];
|
|
|
|
filterByColor = (int)fn["filterByColor"] != 0 ? true : false;
|
|
blobColor = (uchar)(int)fn["blobColor"];
|
|
|
|
filterByArea = (int)fn["filterByArea"] != 0 ? true : false;
|
|
minArea = fn["minArea"];
|
|
maxArea = fn["maxArea"];
|
|
|
|
filterByCircularity = (int)fn["filterByCircularity"] != 0 ? true : false;
|
|
minCircularity = fn["minCircularity"];
|
|
maxCircularity = fn["maxCircularity"];
|
|
|
|
filterByInertia = (int)fn["filterByInertia"] != 0 ? true : false;
|
|
minInertiaRatio = fn["minInertiaRatio"];
|
|
maxInertiaRatio = fn["maxInertiaRatio"];
|
|
|
|
filterByConvexity = (int)fn["filterByConvexity"] != 0 ? true : false;
|
|
minConvexity = fn["minConvexity"];
|
|
maxConvexity = fn["maxConvexity"];
|
|
}
|
|
|
|
void SimpleBlobDetector::Params::write(cv::FileStorage& fs) const
|
|
{
|
|
fs << "thresholdStep" << thresholdStep;
|
|
fs << "minThreshold" << minThreshold;
|
|
fs << "maxThreshold" << maxThreshold;
|
|
|
|
fs << "minRepeatability" << (int)minRepeatability;
|
|
fs << "minDistBetweenBlobs" << minDistBetweenBlobs;
|
|
|
|
fs << "filterByColor" << (int)filterByColor;
|
|
fs << "blobColor" << (int)blobColor;
|
|
|
|
fs << "filterByArea" << (int)filterByArea;
|
|
fs << "minArea" << minArea;
|
|
fs << "maxArea" << maxArea;
|
|
|
|
fs << "filterByCircularity" << (int)filterByCircularity;
|
|
fs << "minCircularity" << minCircularity;
|
|
fs << "maxCircularity" << maxCircularity;
|
|
|
|
fs << "filterByInertia" << (int)filterByInertia;
|
|
fs << "minInertiaRatio" << minInertiaRatio;
|
|
fs << "maxInertiaRatio" << maxInertiaRatio;
|
|
|
|
fs << "filterByConvexity" << (int)filterByConvexity;
|
|
fs << "minConvexity" << minConvexity;
|
|
fs << "maxConvexity" << maxConvexity;
|
|
}
|
|
|
|
SimpleBlobDetectorImpl::SimpleBlobDetectorImpl(const SimpleBlobDetector::Params ¶meters) :
|
|
params(parameters)
|
|
{
|
|
}
|
|
|
|
void SimpleBlobDetectorImpl::read( const cv::FileNode& fn )
|
|
{
|
|
params.read(fn);
|
|
}
|
|
|
|
void SimpleBlobDetectorImpl::write( cv::FileStorage& fs ) const
|
|
{
|
|
params.write(fs);
|
|
}
|
|
|
|
void SimpleBlobDetectorImpl::findBlobs(InputArray _image, InputArray _binaryImage, std::vector<Center> ¢ers) const
|
|
{
|
|
Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
|
|
(void)image;
|
|
centers.clear();
|
|
|
|
std::vector < std::vector<Point> > contours;
|
|
Mat tmpBinaryImage = binaryImage.clone();
|
|
findContours(tmpBinaryImage, contours, RETR_LIST, CHAIN_APPROX_NONE);
|
|
|
|
#ifdef DEBUG_BLOB_DETECTOR
|
|
// Mat keypointsImage;
|
|
// cvtColor( binaryImage, keypointsImage, CV_GRAY2RGB );
|
|
//
|
|
// Mat contoursImage;
|
|
// cvtColor( binaryImage, contoursImage, CV_GRAY2RGB );
|
|
// drawContours( contoursImage, contours, -1, Scalar(0,255,0) );
|
|
// imshow("contours", contoursImage );
|
|
#endif
|
|
|
|
for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++)
|
|
{
|
|
Center center;
|
|
center.confidence = 1;
|
|
Moments moms = moments(Mat(contours[contourIdx]));
|
|
if (params.filterByArea)
|
|
{
|
|
double area = moms.m00;
|
|
if (area < params.minArea || area >= params.maxArea)
|
|
continue;
|
|
}
|
|
|
|
if (params.filterByCircularity)
|
|
{
|
|
double area = moms.m00;
|
|
double perimeter = arcLength(Mat(contours[contourIdx]), true);
|
|
double ratio = 4 * CV_PI * area / (perimeter * perimeter);
|
|
if (ratio < params.minCircularity || ratio >= params.maxCircularity)
|
|
continue;
|
|
}
|
|
|
|
if (params.filterByInertia)
|
|
{
|
|
double denominator = std::sqrt(std::pow(2 * moms.mu11, 2) + std::pow(moms.mu20 - moms.mu02, 2));
|
|
const double eps = 1e-2;
|
|
double ratio;
|
|
if (denominator > eps)
|
|
{
|
|
double cosmin = (moms.mu20 - moms.mu02) / denominator;
|
|
double sinmin = 2 * moms.mu11 / denominator;
|
|
double cosmax = -cosmin;
|
|
double sinmax = -sinmin;
|
|
|
|
double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin;
|
|
double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax;
|
|
ratio = imin / imax;
|
|
}
|
|
else
|
|
{
|
|
ratio = 1;
|
|
}
|
|
|
|
if (ratio < params.minInertiaRatio || ratio >= params.maxInertiaRatio)
|
|
continue;
|
|
|
|
center.confidence = ratio * ratio;
|
|
}
|
|
|
|
if (params.filterByConvexity)
|
|
{
|
|
std::vector < Point > hull;
|
|
convexHull(Mat(contours[contourIdx]), hull);
|
|
double area = contourArea(Mat(contours[contourIdx]));
|
|
double hullArea = contourArea(Mat(hull));
|
|
double ratio = area / hullArea;
|
|
if (ratio < params.minConvexity || ratio >= params.maxConvexity)
|
|
continue;
|
|
}
|
|
|
|
if(moms.m00 == 0.0)
|
|
continue;
|
|
center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00);
|
|
|
|
if (params.filterByColor)
|
|
{
|
|
if (binaryImage.at<uchar> (cvRound(center.location.y), cvRound(center.location.x)) != params.blobColor)
|
|
continue;
|
|
}
|
|
|
|
//compute blob radius
|
|
{
|
|
std::vector<double> dists;
|
|
for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++)
|
|
{
|
|
Point2d pt = contours[contourIdx][pointIdx];
|
|
dists.push_back(norm(center.location - pt));
|
|
}
|
|
std::sort(dists.begin(), dists.end());
|
|
center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
|
|
}
|
|
|
|
centers.push_back(center);
|
|
|
|
|
|
#ifdef DEBUG_BLOB_DETECTOR
|
|
// circle( keypointsImage, center.location, 1, Scalar(0,0,255), 1 );
|
|
#endif
|
|
}
|
|
#ifdef DEBUG_BLOB_DETECTOR
|
|
// imshow("bk", keypointsImage );
|
|
// waitKey();
|
|
#endif
|
|
}
|
|
|
|
void SimpleBlobDetectorImpl::detect(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray)
|
|
{
|
|
//TODO: support mask
|
|
keypoints.clear();
|
|
Mat grayscaleImage;
|
|
if (image.channels() == 3)
|
|
cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
|
|
else
|
|
grayscaleImage = image.getMat();
|
|
|
|
if (grayscaleImage.type() != CV_8UC1) {
|
|
CV_Error(Error::StsUnsupportedFormat, "Blob detector only supports 8-bit images!");
|
|
}
|
|
|
|
std::vector < std::vector<Center> > centers;
|
|
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
|
|
{
|
|
Mat binarizedImage;
|
|
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
|
|
|
|
std::vector < Center > curCenters;
|
|
findBlobs(grayscaleImage, binarizedImage, curCenters);
|
|
std::vector < std::vector<Center> > newCenters;
|
|
for (size_t i = 0; i < curCenters.size(); i++)
|
|
{
|
|
bool isNew = true;
|
|
for (size_t j = 0; j < centers.size(); j++)
|
|
{
|
|
double dist = norm(centers[j][ centers[j].size() / 2 ].location - curCenters[i].location);
|
|
isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius;
|
|
if (!isNew)
|
|
{
|
|
centers[j].push_back(curCenters[i]);
|
|
|
|
size_t k = centers[j].size() - 1;
|
|
while( k > 0 && centers[j][k].radius < centers[j][k-1].radius )
|
|
{
|
|
centers[j][k] = centers[j][k-1];
|
|
k--;
|
|
}
|
|
centers[j][k] = curCenters[i];
|
|
|
|
break;
|
|
}
|
|
}
|
|
if (isNew)
|
|
newCenters.push_back(std::vector<Center> (1, curCenters[i]));
|
|
}
|
|
std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
|
|
}
|
|
|
|
for (size_t i = 0; i < centers.size(); i++)
|
|
{
|
|
if (centers[i].size() < params.minRepeatability)
|
|
continue;
|
|
Point2d sumPoint(0, 0);
|
|
double normalizer = 0;
|
|
for (size_t j = 0; j < centers[i].size(); j++)
|
|
{
|
|
sumPoint += centers[i][j].confidence * centers[i][j].location;
|
|
normalizer += centers[i][j].confidence;
|
|
}
|
|
sumPoint *= (1. / normalizer);
|
|
KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius) * 2.0f);
|
|
keypoints.push_back(kpt);
|
|
}
|
|
}
|
|
|
|
Ptr<SimpleBlobDetector> SimpleBlobDetector::create(const SimpleBlobDetector::Params& params)
|
|
{
|
|
return makePtr<SimpleBlobDetectorImpl>(params);
|
|
}
|
|
|
|
}
|