Merge pull request #19392 from amirtu:OCV-165_finalize_goodFeaturesToTrack_returns_also_corner_value_PR

* goodFeaturesToTrack returns also corner value

(cherry picked from commit 4a8f06755cf93785a82a455a2035a2ff572cafae)

* Added response to GFTT Detector keypoints

(cherry picked from commit b88fb40c6ea037e5283e4fbcf0ffde160c65a035)

* Moved corner values to another optional variable to preserve backward compatibility

(cherry picked from commit 6137383d32859efad7b44dd8a798e7b69f68dec5)

* Removed corners valus from perf tests and better unit tests for corners values

(cherry picked from commit f3d0ef21a78b7d0dc8696c457a6fabecfbe5e8ff)

* Fixed detector gftt call

(cherry picked from commit be2975553ba01a7d2e63f549fadccec6d7d56797)

* Restored test_cornerEigenValsVecs

(cherry picked from commit ea3e11811faee63487449983c0b80ff8ee35bbac)

* scaling fixed;
mineigen calculation rolled back;
gftt function overload added (with quality parameter);
perf tests were added for the new api function;
external bindings were added for the function (with different alias);
fixed issues with composition of the output array of the new function (e.g. as requested in comments) ;
added sanity checks in the perf tests;
removed C API changes.

* minor change to GFTTDetector::detect

* substitute ts->printf with EXPECT_LE

* avoid re-allocations

Co-authored-by: Anas <anas.el.amraoui@live.com>
Co-authored-by: amir.tulegenov <amir.tulegenov@xperience.ai>
This commit is contained in:
Amir Tulegenov 2021-02-16 01:55:57 +06:00 committed by GitHub
parent ad66b070a7
commit 47426a8ae5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 183 additions and 28 deletions

View File

@ -87,6 +87,7 @@ public:
}
std::vector<Point2f> corners;
std::vector<float> cornersQuality;
if (_image.isUMat())
{
@ -97,7 +98,7 @@ public:
ugrayImage = _image.getUMat();
goodFeaturesToTrack( ugrayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
blockSize, gradSize, useHarrisDetector, k );
cornersQuality, blockSize, gradSize, useHarrisDetector, k );
}
else
{
@ -106,14 +107,14 @@ public:
cvtColor( image, grayImage, COLOR_BGR2GRAY );
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
blockSize, gradSize, useHarrisDetector, k );
cornersQuality, blockSize, gradSize, useHarrisDetector, k );
}
CV_Assert(corners.size() == cornersQuality.size());
keypoints.resize(corners.size());
std::vector<Point2f>::const_iterator corner_it = corners.begin();
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
for( ; corner_it != corners.end() && keypoint_it != keypoints.end(); ++corner_it, ++keypoint_it )
*keypoint_it = KeyPoint( *corner_it, (float)blockSize );
for (size_t i = 0; i < corners.size(); i++)
keypoints[i] = KeyPoint(corners[i], (float)blockSize, -1, cornersQuality[i]);
}

View File

@ -1999,6 +1999,38 @@ CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
InputArray mask, int blockSize,
int gradientSize, bool useHarrisDetector = false,
double k = 0.04 );
/** @brief Same as above, but returns also quality measure of the detected corners.
@param image Input 8-bit or floating-point 32-bit, single-channel image.
@param corners Output vector of detected corners.
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
and all detected corners are returned.
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.
@param minDistance Minimum possible Euclidean distance between the returned corners.
@param mask Region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
@param cornersQuality Output vector of quality measure of the detected corners.
@param blockSize Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .
@param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
See cornerEigenValsAndVecs .
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
or #cornerMinEigenVal.
@param k Free parameter of the Harris detector.
*/
CV_EXPORTS CV_WRAP_AS(goodFeaturesToTrackWithQuality) void goodFeaturesToTrack(
InputArray image, OutputArray corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray mask, OutputArray cornersQuality, int blockSize = 3,
int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04);
/** @example samples/cpp/tutorial_code/ImgTrans/houghlines.cpp
An example using the Hough line detector
![Sample input image](Hough_Lines_Tutorial_Original_Image.jpg) ![Output image](Hough_Lines_Tutorial_Result.jpg)

View File

@ -82,6 +82,35 @@ OCL_PERF_TEST_P(GoodFeaturesToTrackFixture, GoodFeaturesToTrack,
SANITY_CHECK(dst);
}
OCL_PERF_TEST_P(GoodFeaturesToTrackFixture, GoodFeaturesToTrackWithQuality,
::testing::Combine(OCL_PERF_ENUM(String("gpu/opticalflow/rubberwhale1.png")),
OCL_PERF_ENUM(3.0), Bool()))
{
GoodFeaturesToTrackParams params = GetParam();
const String fileName = get<0>(params);
const double minDistance = get<1>(params), qualityLevel = 0.01;
const bool harrisDetector = get<2>(params);
const int maxCorners = 1000;
Mat img = imread(getDataPath(fileName), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty()) << "could not load " << fileName;
checkDeviceMaxMemoryAllocSize(img.size(), img.type());
UMat src(img.size(), img.type()), dst(1, maxCorners, CV_32FC2);
img.copyTo(src);
std::vector<float> cornersQuality;
declare.in(src, WARMUP_READ).out(dst);
OCL_TEST_CYCLE() cv::goodFeaturesToTrack(src, dst, maxCorners, qualityLevel, minDistance,
noArray(), cornersQuality, 3, 3, harrisDetector, 0.04);
SANITY_CHECK(dst);
SANITY_CHECK(cornersQuality, 1e-6);
}
} } // namespace opencv_test::ocl
#endif

View File

@ -41,4 +41,37 @@ PERF_TEST_P(Image_MaxCorners_QualityLevel_MinDistance_BlockSize_gradientSize_Use
SANITY_CHECK(corners);
}
PERF_TEST_P(Image_MaxCorners_QualityLevel_MinDistance_BlockSize_gradientSize_UseHarris, goodFeaturesToTrackWithQuality,
testing::Combine(
testing::Values( "stitching/a1.png", "cv/shared/pic5.png"),
testing::Values( 50 ),
testing::Values( 0.01 ),
testing::Values( 3 ),
testing::Values( 3 ),
testing::Bool()
)
)
{
string filename = getDataPath(get<0>(GetParam()));
int maxCorners = get<1>(GetParam());
double qualityLevel = get<2>(GetParam());
int blockSize = get<3>(GetParam());
int gradientSize = get<4>(GetParam());
bool useHarrisDetector = get<5>(GetParam());
double minDistance = 1;
Mat image = imread(filename, IMREAD_GRAYSCALE);
if (image.empty())
FAIL() << "Unable to load source image" << filename;
std::vector<Point2f> corners;
std::vector<float> cornersQuality;
TEST_CYCLE() goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance, noArray(),
cornersQuality, blockSize, gradientSize, useHarrisDetector);
SANITY_CHECK(corners);
SANITY_CHECK(cornersQuality, 1e-6);
}
} // namespace

View File

@ -74,8 +74,8 @@ struct Corner
static bool ocl_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize, int gradientSize,
bool useHarrisDetector, double harrisK )
InputArray _mask, OutputArray _cornersQuality, int blockSize, int gradientSize,
bool useHarrisDetector, double harrisK)
{
UMat eig, maxEigenValue;
if( useHarrisDetector )
@ -176,7 +176,9 @@ static bool ocl_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
std::sort(corner_ptr, corner_ptr + total);
std::vector<Point2f> corners;
std::vector<float> cornersQuality;
corners.reserve(total);
cornersQuality.reserve(total);
if (minDistance >= 1)
{
@ -237,6 +239,7 @@ static bool ocl_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)c.x, (float)c.y));
corners.push_back(Point2f((float)c.x, (float)c.y));
cornersQuality.push_back(c.val);
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
@ -251,13 +254,19 @@ static bool ocl_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
const Corner & c = corner_ptr[i];
corners.push_back(Point2f((float)c.x, (float)c.y));
cornersQuality.push_back(c.val);
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
if (_cornersQuality.needed()) {
Mat(cornersQuality).convertTo(_cornersQuality, _cornersQuality.fixedType() ? _cornersQuality.type() : CV_32F);
}
return true;
}
@ -354,9 +363,25 @@ static bool openvx_harris(Mat image, OutputArray _corners,
}
void cv::goodFeaturesToTrack( InputArray image, OutputArray corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray mask, int blockSize, bool useHarrisDetector, double k )
{
return goodFeaturesToTrack(image, corners, maxCorners, qualityLevel, minDistance,
mask, noArray(), blockSize, 3, useHarrisDetector, k);
}
void cv::goodFeaturesToTrack( InputArray image, OutputArray corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray mask, int blockSize, int gradientSize, bool useHarrisDetector, double k )
{
return goodFeaturesToTrack( image, corners, maxCorners, qualityLevel, minDistance,
mask, noArray(), blockSize, gradientSize, useHarrisDetector, k );
}
void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize, int gradientSize,
InputArray _mask, OutputArray _cornersQuality, int blockSize, int gradientSize,
bool useHarrisDetector, double harrisK )
{
CV_INSTRUMENT_REGION();
@ -366,12 +391,13 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
CV_OCL_RUN(_image.dims() <= 2 && _image.isUMat(),
ocl_goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance,
_mask, blockSize, gradientSize, useHarrisDetector, harrisK))
_mask, _cornersQuality, blockSize, gradientSize, useHarrisDetector, harrisK))
Mat image = _image.getMat(), eig, tmp;
if (image.empty())
{
_corners.release();
_cornersQuality.release();
return;
}
@ -410,11 +436,13 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
}
std::vector<Point2f> corners;
std::vector<float> cornersQuality;
size_t i, j, total = tmpCorners.size(), ncorners = 0;
if (total == 0)
{
_corners.release();
_cornersQuality.release();
return;
}
@ -485,6 +513,8 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
{
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y));
cornersQuality.push_back(*tmpCorners[i]);
corners.push_back(Point2f((float)x, (float)y));
++ncorners;
@ -497,18 +527,24 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
{
for( i = 0; i < total; i++ )
{
cornersQuality.push_back(*tmpCorners[i]);
int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());
int y = (int)(ofs / eig.step);
int x = (int)((ofs - y*eig.step)/sizeof(float));
corners.push_back(Point2f((float)x, (float)y));
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
if (_cornersQuality.needed()) {
Mat(cornersQuality).convertTo(_cornersQuality, _cornersQuality.fixedType() ? _cornersQuality.type() : CV_32F);
}
}
CV_IMPL void
@ -534,12 +570,4 @@ cvGoodFeaturesToTrack( const void* _image, void*, void*,
*_corner_count = (int)ncorners;
}
void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize,
bool useHarrisDetector, double harrisK )
{
cv::goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance,
_mask, blockSize, 3, useHarrisDetector, harrisK );
}
/* End of file. */

View File

@ -62,6 +62,7 @@ PARAM_TEST_CASE(GoodFeaturesToTrack, double, bool)
TEST_DECLARE_INPUT_PARAMETER(src);
UMat points, upoints;
std::vector<float> quality, uquality;
virtual void SetUp()
{
@ -100,14 +101,16 @@ OCL_TEST_P(GoodFeaturesToTrack, Accuracy)
std::vector<Point2f> upts, pts;
OCL_OFF(cv::goodFeaturesToTrack(src_roi, points, maxCorners, qualityLevel, minDistance, noArray()));
OCL_OFF(cv::goodFeaturesToTrack(src_roi, points, maxCorners, qualityLevel, minDistance, noArray(), quality));
ASSERT_FALSE(points.empty());
UMatToVector(points, pts);
OCL_ON(cv::goodFeaturesToTrack(usrc_roi, upoints, maxCorners, qualityLevel, minDistance));
OCL_ON(cv::goodFeaturesToTrack(usrc_roi, upoints, maxCorners, qualityLevel, minDistance, noArray(), uquality));
ASSERT_FALSE(upoints.empty());
UMatToVector(upoints, upts);
ASSERT_EQ(pts.size(), quality.size());
ASSERT_EQ(upts.size(), uquality.size());
ASSERT_EQ(upts.size(), pts.size());
int mistmatch = 0;
@ -115,7 +118,8 @@ OCL_TEST_P(GoodFeaturesToTrack, Accuracy)
{
Point2i a = upts[i], b = pts[i];
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1;
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1 &&
std::abs(quality[i] - uquality[i]) <= 3.f * FLT_EPSILON * std::max(quality[i], uquality[i]);
if (!eq)
++mistmatch;
@ -131,9 +135,10 @@ OCL_TEST_P(GoodFeaturesToTrack, EmptyCorners)
generateTestData();
usrc_roi.setTo(Scalar::all(0));
OCL_ON(cv::goodFeaturesToTrack(usrc_roi, upoints, maxCorners, qualityLevel, minDistance));
OCL_ON(cv::goodFeaturesToTrack(usrc_roi, upoints, maxCorners, qualityLevel, minDistance, noArray(), uquality));
ASSERT_TRUE(upoints.empty());
ASSERT_TRUE(uquality.empty());
}
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, GoodFeaturesToTrack,

View File

@ -88,14 +88,13 @@ test_cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size,
cvtest::filter2D( src, dy2, ftype, kernel*kernel_scale, anchor, 0, borderType,borderValue );
double denom = (1 << (aperture_size-1))*block_size;
denom = denom * denom;
if( _aperture_size < 0 )
denom *= 4;
denom *= 2.;
if(type != ftype )
denom *= 255.;
denom = 1./denom;
denom = 1. / (denom * denom);
for( i = 0; i < src.rows; i++ )
{
@ -159,8 +158,8 @@ test_cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size,
static void
test_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize, int gradientSize,
bool useHarrisDetector, double harrisK )
InputArray _mask, OutputArray _cornersQuality,
int blockSize, int gradientSize, bool useHarrisDetector, double harrisK)
{
CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 );
@ -208,6 +207,7 @@ test_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
}
vector<Point2f> corners;
vector<float> cornersQuality;
size_t i, j, total = tmpCorners.size(), ncorners = 0;
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
@ -277,6 +277,8 @@ test_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
{
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y));
cornersQuality.push_back(*tmpCorners[i]);
corners.push_back(Point2f((float)x, (float)y));
++ncorners;
@ -289,18 +291,24 @@ test_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
{
for( i = 0; i < total; i++ )
{
cornersQuality.push_back(*tmpCorners[i]);
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data);
int y = (int)(ofs / eig.step);
int x = (int)((ofs - y*eig.step)/sizeof(float));
corners.push_back(Point2f((float)x, (float)y));
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
if (_cornersQuality.needed()) {
Mat(cornersQuality).convertTo(_cornersQuality, _cornersQuality.fixedType() ? _cornersQuality.type() : CV_32F);
}
}
@ -325,6 +333,8 @@ protected:
int maxCorners;
vector<Point2f> corners;
vector<Point2f> Refcorners;
vector<float> cornersQuality;
vector<float> RefcornersQuality;
double qualityLevel;
double minDistance;
int blockSize;
@ -396,6 +406,7 @@ void CV_GoodFeatureToTTest::run_func()
qualityLevel,
minDistance,
Mat(),
cornersQuality,
blockSize,
gradientSize,
useHarrisDetector,
@ -414,6 +425,7 @@ void CV_GoodFeatureToTTest::run_func()
qualityLevel,
minDistance,
Mat(),
cornersQuality,
blockSize,
gradientSize,
useHarrisDetector,
@ -439,6 +451,7 @@ int CV_GoodFeatureToTTest::validate_test_results( int test_case_idx )
qualityLevel,
minDistance,
Mat(),
RefcornersQuality,
blockSize,
gradientSize,
useHarrisDetector,
@ -457,6 +470,7 @@ int CV_GoodFeatureToTTest::validate_test_results( int test_case_idx )
qualityLevel,
minDistance,
Mat(),
RefcornersQuality,
blockSize,
gradientSize,
useHarrisDetector,
@ -471,7 +485,7 @@ int CV_GoodFeatureToTTest::validate_test_results( int test_case_idx )
TEST_MESSAGEL (" TestCorners = ", corners.size())
TEST_MESSAGE ("\n")
ts->printf(cvtest::TS::CONSOLE, "actual error: %g, expected: %g", e, eps);
EXPECT_LE(e, eps); // never true
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
for(int i = 0; i < (int)std::min((unsigned int)(corners.size()), (unsigned int)(Refcorners.size())); i++){
@ -488,6 +502,19 @@ int CV_GoodFeatureToTTest::validate_test_results( int test_case_idx )
ts->set_failed_test_info(cvtest::TS::OK);
}
e = cv::norm(cornersQuality, RefcornersQuality, NORM_RELATIVE | NORM_INF);
if (e > eps)
{
EXPECT_LE(e, eps); // never true
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
for(int i = 0; i < (int)std::min((unsigned int)(cornersQuality.size()), (unsigned int)(cornersQuality.size())); i++) {
if (std::abs(cornersQuality[i] - RefcornersQuality[i]) > eps * std::max(cornersQuality[i], RefcornersQuality[i]))
printf("i = %i Quality %2.6f Quality ref %2.6f\n", i, cornersQuality[i], RefcornersQuality[i]);
}
}
return BaseTest::validate_test_results(test_case_idx);
}